10 research outputs found

    Molecular control of endurance training adaptation in male mouse skeletal muscle

    Get PDF
    Skeletal muscle has an enormous plastic potential to adapt to various external and internal perturbations. Although morphological changes in endurance-trained muscles are well described, the molecular underpinnings of training adaptation are poorly understood. We therefore aimed to elucidate the molecular signature of muscles of trained male mice and unravel the training status-dependent responses to an acute bout of exercise. Our results reveal that, even though at baseline an unexpectedly low number of genes define the trained muscle, training status substantially affects the transcriptional response to an acute challenge, both quantitatively and qualitatively, in part associated with epigenetic modifications. Finally, transiently activated factors such as the peroxisome proliferator-activated receptor-γ coactivator 1α are indispensable for normal training adaptation. Together, these results provide a molecular framework of the temporal and training status-dependent exercise response that underpins muscle plasticity in training

    Characterization and Evolution of Transmembrane Proteins with Focus on G-protein coupled receptors in Pre-vertebrate Species

    No full text
    G protein-coupled receptors (GPCRs) are one of the largest protein families in mammals. GPCRs are instrumental for hormonal and neurotransmitter signalling and are important in all major physiological systems of the body. Paper I describes the repertoire of GPCRs in Branchiostoma floridae, which is one of the species most closely related species to vertebrates. Mining and phylogenetic analysis of the amphioxus genome showed the presence of at least 664 distinct GPCRs distributed among all the main families of GPCRs; Glutamate (18), Rhodopsin (570), Adhesion (37), Frizzled (6) and Secretin (16). Paper II contains studies of the Adhesion, Methuselah and Secretin GPCR families in nine genomes. The Adhesion GPCRs are the most complex gene family among GPCRs with large genomic size, multiple introns and a fascinating flora of functional domains. Phylogenetic analysis showed Adhesion group V (that contains GPR133 and GPR144) to be the closest relative to the Secretin family among the groups in the Adhesion family, which was also supported by splice site setup and conserved motifs. Paper III examines the repertoire of human transmembrane proteins. These form key nodes in mediating the cell’s interaction with the surroundings, which is one of the main reasons why the majority of drug targets are membrane proteins. We identified 6,718 human membrane proteins and classified the majority of them into 234 families of which 151 belong to the three major functional groups; Receptors (63 groups, 1,352 members), Transporters (89 groups, 817 members) or Enzymes (7 groups, 533 members). In addition, 74 Miscellaneous groups were shown to include 697 members. Paper IV clarifies the hierarchy of the main families and evolutionary origin of majority of the metazoan GPCR families. Overall, it suggests common decent of at least 97% of the GPCRs sequences found in humans, including all the main families

    Critical evaluation of the FANTOM3 non-coding RNA transcripts

    No full text
    AbstractWe studied the genomic positions of 38,129 putative ncRNAs from the RIKEN dataset in relation to protein-coding genes. We found that the dataset has 41% sense, 6% antisense, 24% intronic and 29% intergenic transcripts. Interestingly, 17,678 (47%) of the FANTOM3 transcripts were found to potentially be internally primed from longer transcripts. The highest fraction of these transcripts was found among the intronic transcripts and as many as 77% or 6929 intronic transcripts were both internally primed and unspliced. We defined a filtered subset of 8535 transcripts that did not overlap with protein-coding genes, did not contain ORFs longer than 100 residues and were not internally primed. This dataset contains 53% of the FANTOM3 transcripts associated to known ncRNA in RNAdb and expands previous similar efforts with 6523 novel transcripts. This bioinformatic filtering of the FANTOM3 non-coding dataset has generated a lead dataset of transcripts without signs of being artefacts, providing a suitable dataset for investigation with hybridization-based techniques

    A gene therapy for inherited blindness using dCas9-VPR–mediated transcriptional activation

    Get PDF
    Catalytically inactive dCas9 fused to transcriptional activators (dCas9-VPR) enables activation of silent genes. Many disease genes have counterparts, which serve similar functions but are expressed in distinct cell types. One attractive option to compensate for the missing function of a defective gene could be to transcriptionally activate its functionally equivalent counterpart via dCas9-VPR. Key challenges of this approach include the delivery of dCas9-VPR, activation efficiency, long-term expression of the target gene, and adverse effects in vivo. Using dual adeno-associated viral vectors expressing split dCas9-VPR, we show efficient transcriptional activation and long-term expression of cone photoreceptor-specific M-opsin (Opn1mw) in a rhodopsin-deficient mouse model for retinitis pigmentosa. One year after treatment, this approach yields improved retinal function and attenuated retinal degeneration with no apparent adverse effects. Our study demonstrates that dCas9-VPR–mediated transcriptional activation of functionally equivalent genes has great potential for the treatment of genetic disorders

    Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers.

    No full text
    Genes underlying mutant phenotypes can be isolated by combining marker discovery, genetic mapping and resequencing, but a more straightforward strategy for mapping mutations would be the direct comparison of mutant and wild-type genomes. Applying such an approach, however, is hampered by the need for reference sequences and by mutational loads that confound the unambiguous identification of causal mutations. Here we introduce NIKS (needle in the k-stack), a reference-free algorithm based on comparing k-mers in whole-genome sequencing data for precise discovery of homozygous mutations. We applied NIKS to eight mutants induced in nonreference rice cultivars and to two mutants of the nonmodel species Arabis alpina. In both species, comparing pooled F2 individuals selected for mutant phenotypes revealed small sets of mutations including the causal changes. Moreover, comparing M3 seedlings of two allelic mutants unambiguously identified the causal gene. Thus, for any species amenable to mutagenesis, NIKS enables forward genetics without requiring segregating populations, genetic maps and reference sequences
    corecore