1,020 research outputs found

    Isolated testing of highly maneuverable inlet con cepts

    Get PDF
    Ten percent scale models of a Mach 2.2 two dimensional inlet and a Mach 2.0 axisymmetric inlet were tested in the NASA Lewis Research Center 8'x6' Supersonic Wind Tunnel as part of a cooperative effort with the McDonnell Aircraft Company. The objective of this effort was to test methods designed to increase the maneuvering performance of fighter aircraft inlets. Maneuvering improvement concepts were tested up to 40-deg angle of attack for Mach numbers of 0.6 and 0.9, and up to 25 deg for Mach numbers 1.2 and 1.4. Maneuvering improvement concepts included a rotating cowl lip, auxiliary inlets aft of the inlet throat, and a retracting centerbody for the axisymmetric inlet. Test results show that the rotating cowl design was effective in improving subsonic maneuvering performance for both inlets. Auxiliary inlets did not produce significant performance increases for either model. The retracted centerbody resulted in some performance benefits at high angles of attack. None of the maneuvering improvement concepts were effective at Mach 1.2 and 1.4

    Creating an Inclusive Social Enterprise Ecosystem: A Policy Recommendation for the Growth of SE Sector in the Philippines

    Get PDF
    This policy paper highlights the critical roles of both public and private organizations in creating an enabling ecosystem for social enterprises to grow while striking a good balance in their social ,economic, and environmental bottom lines. It contains recommendations on the formation aspect of social entrepreneurs and the support mechanisms that need to be established by different stakeholders such as the academe, national government agencies, local government units, private institutions, and communities

    Staged Contact Optimization: Combining Contact-Implicit and Multi-Phase Hybrid Trajectory Optimization

    Full text link
    Trajectory optimization problems for legged robots are commonly formulated with fixed contact schedules. These multi-phase Hybrid Trajectory Optimization (HTO) methods result in locally optimal trajectories, but the result depends heavily upon the predefined contact mode sequence. Contact-Implicit Optimization (CIO) offers a potential solution to this issue by allowing the contact mode to be determined throughout the trajectory by the optimization solver. However, CIO suffers from long solve times and convergence issues. This work combines the benefits of these two methods into one algorithm: Staged Contact Optimization (SCO). SCO tightens constraints on contact in stages, eventually fixing them to allow robust and fast convergence to a feasible solution. Results on a planar biped and spatial quadruped demonstrate speed and optimality improvements over CIO and HTO. These properties make SCO well suited for offline trajectory generation or as an effective tool for exploring the dynamic capabilities of a robot

    Magneto-elastic coupling in La(Fe, Mn, Si)<sub>13</sub>H<i>y</i> within the Bean-Rodbell model

    Get PDF
    First order magnetic phase transition materials present a large magnetocaloric effect around the transition temperature, where these materials usually undergo a large volume or structural change. This may lead to some challenges for applications, as the material may break apart during field change, due to high internal stresses. A promising magnetocaloric material is La(Fe, Mn, Si)13Hy, where the transition temperature can be controlled through the Mn amount. In this work we use XRD measurements to evaluate the temperature dependence of the unit cell volume with a varying Mn amount. The system is modelled using the Bean-Rodbell model, which is based on the assumption that the spin-lattice coupling depends linearly on the unit cell volume. This coupling is defined by the model parameter η, where for η > 1 the material undergoes a first order transition and for η  ≤ 1 a second order transition. We superimpose a Gaussian distribution of the transition temperature with a standard deviation σ T 0 , in order to model the chemical inhomogeneity. Good agreement is obtained between measurements and model with values of η  ∼ 1.8 and σ(T0) = 1.0 K

    Fingerprinting the impacts of global change on tropical forests

    Get PDF
    Recent observations of widespread changes in mature tropical forests such as increasing tree growth, recruitment and mortality rates and increasing above-ground biomass suggest that 'global change' agents may be causing predictable changes in tropical forests. However, consensus over both the robustness of these changes and the environmental drivers that may be causing them is yet to emerge. This paper focuses on the second part of this debate. We review (i) the evidence that the physical, chemical and biological environment that tropical trees grow in has been altered over recent decades across large areas of the tropics, and (ii) the theoretical, experimental and observational evidence regarding the most likely effects of each of these changes on tropical forests. Ten potential widespread drivers of environmental change were identified: temperature, precipitation, solar radiation, climatic extremes (including El Niño Southern Oscillation events), atmospheric CO2 concentrations, nutrient deposition, O3/acid depositions, hunting, land-use change and increasing liana numbers. We note that each of these environmental changes is expected to leave a unique 'fingerprint' in tropical forests, as drivers directly force different processes, have different distributions in space and time and may affect some forests more than others (e.g. depending on soil fertility). Thus, in the third part of the paper we present testable a priori predictions of forest responses to assist ecologists in attributing particular changes in forests to particular causes across multiple datasets. Finally, we discuss how these drivers may change in the future and the possible consequences for tropical forests

    Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots

    Get PDF
    Several widespread changes in the ecology of old-growth tropical forests have recently been documented for the late twentieth century, in particular an increase in stem turnover (pan-tropical), and an increase in above-ground biomass (neotropical). Whether these changes are synchronous and whether changes in growth are also occurring is not known. We analysed stand-level changes within 50 long-term. monitoring plots from across South America spanning 1971-2002. We show that: (i) basal area (BA: sum of the cross-sectional areas of all trees in a plot) increased significantly over time (by 0.10 +/- 0.04 m(2) ha(-1) yr(-1), mean +/- 95% CI); as did both (ii) stand-level BA growth rates (sum of the increments of BA of surviving trees and BA of new trees that recruited into a plot); and (iii) stand-level BA mortality rates (sum of the cross-sectional areas of all trees that died in a plot). Similar patterns were observed on a per-stem basis: (i) stem density (number of stems per hectare; 1 hectare is 10(4) m(2)) increased significantly over time (0.94 +/- 0.63 stems ha(-1) yr(-1)); as did both (ii) stem recruitment rates; and (iii) stem mortality rates. In relative terms, the pools of BA and stem density increased by 0.38 +/- 0.15% and 0.18 +/- 0.12% yr(-1), respectively. The fluxes into and out of these pools-stand-level BA growth, stand-level BA mortality, stem recruitment and stem mortality rates-increased, in relative terms, by an order of magnitude more. The gain terms (BA growth, stem recruitment) consistently exceeded the loss terms (BA loss, stem mortality) throughout the period, suggesting that whatever process is driving these changes was already acting before the plot network was established. Large long-term increases in stand-level BA growth and simultaneous increases in stand BA and stem density imply a continent-wide increase in resource availability which is increasing net primary productivity and altering forest dynamics. Continent-wide changes in incoming solar radiation, and increases in atmospheric concentrations of CO2 and air temperatures may have increased resource supply over recent decades, thus causing accelerated growth and increased dynamism across the world's largest tract of tropical forest

    Racial Differences in Atrial Fibrillation-Related Cardiovascular Disease and Mortality: The Atherosclerosis Risk in Communities (ARIC) Study

    Get PDF
    The adverse outcomes associated with atrial fibrillation (AF) have been studied in predominantly white cohorts. Racial differences in outcomes associated with AF merit continued investigation
    • …
    corecore