17 research outputs found
Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation
Biological functions of proteins are influenced by posttranslational modifications such as on/off switching by phosphorylation and modulation by glycosylation. Proteolytic processing regulates cytokine and chemokine activities. In this study, we report that natural posttranslational citrullination or deimination alters the biological activities of the neutrophil chemoattractant and angiogenic cytokine CXCL8/interleukin-8 (IL-8). Citrullination of arginine in position 5 was discovered on 14% of natural leukocyte-derived CXCL8(1–77), generating CXCL8(1–77)Cit5. Peptidylarginine deiminase (PAD) is known to citrullinate structural proteins, and it may initiate autoimmune diseases. PAD efficiently and site-specifically citrullinated CXCL5, CXCL8, CCL17, CCL26, but not IL-1β. In comparison with CXCL8(1–77), CXCL8(1–77)Cit5 had reduced affinity for glycosaminoglycans and induced less CXCR2-dependent calcium signaling and extracellular signal-regulated kinase 1/2 phosphorylation. In contrast to CXCL8(1–77), CXCL8(1–77)Cit5 was resistant to thrombin- or plasmin-dependent potentiation into CXCL8(6–77). Upon intraperitoneal injection, CXCL8(6–77) was a more potent inducer of neutrophil extravasation compared with CXCL8(1–77). Despite its retained chemotactic activity in vitro, CXCL8(1–77)Cit5 was unable to attract neutrophils to the peritoneum. Finally, in the rabbit cornea angiogenesis assay, the equally potent CXCL8(1–77) and CXCL8(1–77)Cit5 were less efficient angiogenic molecules than CXCL8(6–77). This study shows that PAD citrullinates the chemokine CXCL8, and thus may dampen neutrophil extravasation during acute or chronic inflammation
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Colocalization analysis in fluorescence micrographs: verification of a more accurate calculation of Pearson's correlation coefficient
One of the most routine uses of fluorescence microscopy is colocalization, i.e., the demonstration of a relationship between pairs of biological molecules. Frequently this is presented simplistically by the use of overlays of red and green images, with areas of yellow indicating colocalization of the molecules. Colocalization data are rarely quantified and can be misleading. Our results from both synthetic and biological datasets demonstrate that the generation of Pearson's correlation coefficient between pairs of images can overestimate positive correlation and fail to demonstrate negative correlation. We have demonstrated that the calculation of a thresholded Pearson's correlation coefficient using only intensity values over a determined threshold in both channels produces numerical values that more accurately describe both synthetic datasets and biological examples. Its use will bring clarity and accuracy to colocalization studies using fluorescent microscopy
Synergy between coproduced CC and CXC chemokines in monocyte chemotaxis through receptor-mediated events.
CC and CXC chemokines coinduced in fibroblasts and leukocytes by cytokines and microbial agents determine the number of phagocytes infiltrating into inflamed tissues. Interleukin-8/CXCL8 and stromal cell-derived factor-1/CXCL12 significantly and dose-dependently increased the migration of monocytes, expressing the corresponding CXC chemokine receptors CXCR2 and CXCR4, toward suboptimal concentrations of the monocyte chemotactic proteins CCL2 or CCL7. These findings were confirmed using different chemotaxis assays and monocytic THP-1 cells. In contrast, the combination of two CC chemokines (CCL2 plus CCL7) or two CXC chemokines (CXCL8 plus CXCL12) did not provide synergy in monocyte chemotaxis. These data show that chemokines competing for related receptors and using similar signaling pathways do not synergize. Receptor heterodimerization is probably not essential for chemokine synergy as shown in CXCR4/CCR2 cotransfectants. It is noteworthy that CCL2 mediated extracellular signal-regulated kinase 1/2 phosphorylation and calcium mobilization was significantly enhanced by CXCL8 in monocytes, indicating cooperative downstream signaling pathways during enhanced chemotaxis. Moreover, in contrast to intact CXCL12, truncated CXCL12(3-68), which has impaired receptor signaling capacity but can still desensitize CXCR4, was unable to synergize with CCL2 in monocytic cell migration. Furthermore, AMD3100 and RS102895, specific CXCR4 and CCR2 inhibitors, respectively, reduced the synergistic effect between CCL2 and CXCL12 significantly. These data indicate that for synergistic interaction between chemokines binding and signaling of the two chemokines via their proper receptors is necessary.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
The COOH-Terminal Peptide of Platelet Factor-4 Variant (CXCL4L1/PF-4var(47-70)) Strongly Inhibits Angiogenesis and Suppresses B16 Melanoma Growth In vivo
Chemokines influence tumor growth directly or indirectly via both angiogenesis and tumor-leukocyte interactions. Platelet factor-4 (CXCL4/PF-4), which is released from alpha-granules of activated platelets, is the first described angiostatic chemokine. Recently, it was found that the variant of CXCL4/PF-4 (CXCL4L1/PF-4var) could exert a more pronounced angiostatic and antitumoral effect than CXCL4/PF-4. However, the molecular mechanisms of the angiostatic activities of the PF-4 forms remain partially elusive. Here, we studied the biological properties of the chemically synthesized COOH-terminal peptides of CXCL4/PF-4 (CXCL4/PF-4(47-70)) and CXCL4L1/PF-4var (CXCL4L1/PF-4var(47-70)). Both PF-4 peptides lacked monocyte and lymphocyte chemotactic activity but equally well inhibited (25 nmol/L) endothelial cell motility and proliferation in the presence of a single stimulus (i.e., exogenous recombinant fibroblast growth factor-2). In contrast, when assayed in more complex angiogenesis test systems characterized by the presence of multiple mediators, including in vitro wound-healing (2.5 nmol/L versus 12.5 nmol/L), Matrigel (60 nmol/L versus 300 nmol/L), and chorioallantoic membrane assays, CXCL4L1/PF-4var(47-70) was found to be significantly (5-fold) more angiostatic than CXCL4/PF-4(47-70). In addition, low (7 microg total) doses of intratumoral CXCL4L1/PF-4var(47-70) inhibited B16 melanoma growth in mice more extensively than CXCL4/PF-4(47-70). This antitumoral activity was predominantly mediated through inhibition of angiogenesis (without affecting blood vessel stability) and induction of apoptosis, as evidenced by immunohistochemical and fluorescent staining of B16 tumor tissue. In conclusion, CXCL4L1/PF-4var(47-70) is a potent antitumoral and antiangiogenic peptide. These results may represent the basis for the design of CXCL4L1/PF-4var COOH-terminal-derived peptidomimetic anticancer drugs.status: publishe
Expression of angiostatic platelet factor-4var/CXCL4L1 counterbalances angiogenic impulses of vascular endothelial growth factor, interleukin-8/CXCL8, and stromal cell-derived factor 1/CXCL12 in esophageal and colorectal cancer
Chemokines influence tumor progression through regulation of leukocyte chemotaxis, angiogenesis, and metastasis. In this study, the regulated expression of angiogenic (stromal cell-derived factor [SDF]-1/CXCL12 and interleukin [IL]-8/CXCL8) and angiostatic (platelet factor [PF]-4var/CXCL4L1 and inducible protein [IP-10]/CXCL10) chemokines was examined in human colorectal and esophageal cancer. In HCT 116 and HCT-8 colorectal adenocarcinoma cells, the production of IL-8 immunoreactivity was up-regulated by IL-1beta, tumor necrosis factor (TNF)-alpha, the toll-like receptor (TLR) ligands double-stranded RNA and peptidoglycan and phorbol ester. Increased PF-4 and synergistic IL-8 and IP-10 induction in carcinoma cells after stimulation with IL-1beta plus TNF-alpha or interferon-gamma was demonstrated by enzyme-linked immunosorbent assay, quantitative reverse transcriptase polymerase chain reaction, or immunocytochemistry. In addition, IL-8 from HT-29 colorectal adenocarcinoma cells was molecularly identified as intact chemokine, as well as NH(2)-terminally truncated, more active IL-8(6-77). The presence of PF-4var, SDF-1, and vascular endothelial growth factor (VEGF) was evidenced by immunohistochemistry in surgical samples from 51 patients operated on for colon adenocarcinoma (AC), esophageal AC, or esophageal squamous cell carcinoma (SCC). PF-4var was strongly detected in colorectal cancer, whereas its expression in esophageal cancer was rather weak. Staining for SDF-1 was almost negative in esophageal SCC, whereas a more intense and frequent staining was observed in AC of the esophagus and colon. Staining for VEGF was moderately to strongly positive in all 3 types of cancer, although less prominent in esophageal AC. The heterogenous expression of angiogenic (IL-8, SDF-1) as well as angiostatic (IP-10, PF-4var) chemokines not only within the tumor and between the different cases but also between the different tumor cell types may indicate a distinct role of the various chemokines in the complex process of tumor development.status: publishe
Citrullination of CXCL12 differentially reduces CXCR4 and CXCR7 binding with loss of inflammatory and anti-HIV-1 activity via CXCR4.
Posttranslational proteolytic processing of chemokines is a natural mechanism to regulate inflammation. In this study, we describe modification of the CXC chemokine stromal cell-derived factor 1alpha/CXCL12 by peptidylarginine deiminase (PAD) that converts arginine residues into citrulline (Cit), thereby reducing the number of positive charges. The three NH(2)-terminal arginines of CXCL12, Arg(8), Arg(12), and Arg(20), were citrullinated upon incubation with PAD. The physiologic relevance of citrullination was demonstrated by showing coexpression of CXCL12 and PAD in Crohn's disease. Three CXCL12 isoforms were synthesized for biologic characterization: CXCL12-1Cit, CXCL12-3Cit, and CXCL12-5Cit, in which Arg(8), Arg(8)/Arg(12)/Arg(20), or all five arginines were citrullinated, respectively. Replacement of only Arg(8) caused already impaired (30-fold reduction) CXCR4 binding and signaling (calcium mobilization, phosphorylation of ERK and protein kinase B) properties. Interaction with CXCR4 was completely abolished for CXCL12-3Cit and CXCL12-5Cit. However, the CXCR7-binding capacities of CXCL12-1Cit and CXCL12-3Cit were, respectively, intact and reduced, whereas CXCL12-5Cit failed to bind CXCR7. In chemotaxis assays with lymphocytes and monocytes, CXCL12-3Cit and CXCL12-5Cit were completely devoid of activity, whereas CXCL12-1Cit, albeit at higher concentrations than CXCL12, induced migration. The antiviral potency of CXCL12-1Cit was reduced compared with CXCL12 and CXCL12-3Cit and CXCL12-5Cit (maximal dose 200 nM) could not inhibit infection of lymphocytic MT-4 cells with the HIV-1 strains NL4.3 and HE. In conclusion, modification of CXCL12 by one Cit severely impaired the CXCR4-mediated biologic effects of this chemokine and maximally citrullinated CXCL12 was inactive. Therefore, PAD is a potent physiologic down-regulator of CXCL12 function.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe