6 research outputs found

    Graph AI in Medicine

    Full text link
    In clinical artificial intelligence (AI), graph representation learning, mainly through graph neural networks (GNNs), stands out for its capability to capture intricate relationships within structured clinical datasets. With diverse data -- from patient records to imaging -- GNNs process data holistically by viewing modalities as nodes interconnected by their relationships. Graph AI facilitates model transfer across clinical tasks, enabling models to generalize across patient populations without additional parameters or minimal re-training. However, the importance of human-centered design and model interpretability in clinical decision-making cannot be overstated. Since graph AI models capture information through localized neural transformations defined on graph relationships, they offer both an opportunity and a challenge in elucidating model rationale. Knowledge graphs can enhance interpretability by aligning model-driven insights with medical knowledge. Emerging graph models integrate diverse data modalities through pre-training, facilitate interactive feedback loops, and foster human-AI collaboration, paving the way to clinically meaningful predictions

    Cyclic multiplex fluorescent immunohistochemistry and machine learning reveal distinct states of astrocytes and microglia in normal aging and Alzheimer’s disease

    Get PDF
    Background Astrocytes and microglia react to Aβ plaques, neurofibrillary tangles, and neurodegeneration in the Alzheimer’s disease (AD) brain. Single-nuclei and single-cell RNA-seq have revealed multiple states or subpopulations of these glial cells but lack spatial information. We have developed a methodology of cyclic multiplex fluorescent immunohistochemistry on human postmortem brains and image analysis that enables a comprehensive morphological quantitative characterization of astrocytes and microglia in the context of their spatial relationships with plaques and tangles. Methods Single FFPE sections from the temporal association cortex of control and AD subjects were subjected to 8 cycles of multiplex fluorescent immunohistochemistry, including 7 astroglial, 6 microglial, 1 neuronal, Aβ, and phospho-tau markers. Our analysis pipeline consisted of: (1) image alignment across cycles; (2) background subtraction; (3) manual annotation of 5172 ALDH1L1+ astrocytic and 6226 IBA1+ microglial profiles; (4) local thresholding and segmentation of profiles; (5) machine learning on marker intensity data; and (6) deep learning on image features. Results Spectral clustering identified three phenotypes of astrocytes and microglia, which we termed “homeostatic,” “intermediate,” and “reactive.” Reactive and, to a lesser extent, intermediate astrocytes and microglia were closely associated with AD pathology (≤ 50 µm). Compared to homeostatic, reactive astrocytes contained substantially higher GFAP and YKL-40, modestly elevated vimentin and TSPO as well as EAAT1, and reduced GS. Intermediate astrocytes had markedly increased EAAT2, moderately increased GS, and intermediate GFAP and YKL-40 levels. Relative to homeostatic, reactive microglia showed increased expression of all markers (CD68, ferritin, MHC2, TMEM119, TSPO), whereas intermediate microglia exhibited increased ferritin and TMEM119 as well as intermediate CD68 levels. Machine learning models applied on either high-plex signal intensity data (gradient boosting machines) or directly on image features (convolutional neural networks) accurately discriminated control vs. AD diagnoses at the single-cell level. Conclusions Cyclic multiplex fluorescent immunohistochemistry combined with machine learning models holds promise to advance our understanding of the complexity and heterogeneity of glial responses as well as inform transcriptomics studies. Three distinct phenotypes emerged with our combination of markers, thus expanding the classic binary “homeostatic vs. reactive” classification to a third state, which could represent “transitional” or “resilient” glia.España Ministry of Science, Innovation, and Universities FPU fellowship to CM-CMassachusetts Alzheimer’s Disease Research Center grant P30AG062421 to BTH, and 1R56AG061196 to BTHAlzheimer’s Association (AACF17-524184 and AACF-17-524184-RAPID to AS-P

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Composition of Caenorhabditis elegans extracellular vesicles suggests roles in metabolism, immunity, and aging.

    No full text
    The nematode Caenorhabditis elegans has been instrumental in the identification of evolutionarily conserved mechanisms of aging. C. elegans also has recently been found to have evolutionarily conserved extracellular vesicle (EV) signaling pathways. We have been developing tools that allow for the detailed study of EV biology in C. elegans. Here we apply our recently published method for high specificity purification of EVs from C. elegans to carry out target-independent proteomic and RNA analysis of nematode EVs. We identify diverse coding and non-coding RNA and protein cargo types commonly found in human EVs. The EV cargo spectrum is distinct from whole worms, suggesting that protein and RNA cargos are actively recruited to EVs. Gene ontology analysis revealed C. elegans EVs are enriched for extracellular-associated and signaling proteins, and network analysis indicates enrichment for metabolic, immune, and basement membrane associated proteins. Tissue enrichment and gene expression analysis suggests the secreted EV proteins are likely to be derived from intestine, muscle, and excretory tissue. An unbiased comparison of the EV proteins with a large database of C. elegans genome-wide microarray data showed significant overlap with gene sets that are associated with aging and immunity. Taken together our data suggest C. elegans could be a promising in vivo model for studying the genetics and physiology of EVs in a variety of contexts including aging, metabolism, and immune response

    Additional file 2 of Cyclic multiplex fluorescent immunohistochemistry and machine learning reveal distinct states of astrocytes and microglia in normal aging and Alzheimer’s disease

    No full text
    Additional File 2: Figure S1. A β pathology in the temporal pole cortex. Description: Immunohistochemistry for Aβ (mouse monoclonal antibody, clone 6F/3D, Agilent, #M0872, 1:600) with peroxidase/DAB was performed in nearly-adjacent sections to those used for cyclic multiplex fluorescent immunohistochemistry in a Leica BOND-III automated stainer. Sections were counterstained with hematoxylin. Scale bars: 5 mm, insets 200 μm. Figure S2. Phospho-tau pathology in the temporal pole cortex. Description: Immunohistochemsitry for phospho-tauSer202/Thr205(mouse monoclonal antibody, clone AT8, Thermo-Scientific, #MN1020, 1:10,000) with peroxidase/DAB was performed in nearly-adjacent sections to those used for cyclic multiplex fluorescent immunohistochemistry in a Leica BOND-III automated stainer. Sections were counterstained with hematoxylin. Scale bars: 5 mm, insets 200 μm. Figure S3. Expression levels of selected markers across astrocytic and microglial subclusters from public single-nuclei RNA-seq studies. Description: Bubble plots illustrate the percent of nuclei (bubble size) and the gene expression levels (z-scores, color bar) of the astrocytic and microglial markers used in our cyclic multiplex fluorescent immunohistochemistry protocol across the astrocytic and microglial subclusters rendered by several published single-nuclei RNA-seq data sets. Note that our set of markers discriminates some of these transcriptomic subclusters. Figure S4. Characterization of astrocytes and microglia in AD vs. CTRL by cortical layer. Description: Box and whisker plots illustrate the distribution (box: median and interquartile range [IQR]; whiskers: 1.5 × IQR) of mean gray intensity (MGI) z-scores for (a) each astrocytic marker and (b) each microglial marker across the CTRL and AD groups by cortical layer. Only layers II to VI were included in this study. Figure S5. Characterization of astrocytic and microglial states by cortical layer. Description: Box and whisker plots show the distribution (box: median and interquartile range [IQR]; whiskers: 1.5 × IQR) of mean gray intensity (MGI) z-scores for each astrocytic (a) or microglial (b) marker across the three phenotypes by cortical layer. Only layers II to VI were included in this study. Figure S6. Effects of proximity to AD neuropathological changes on astrocytic and microglial phenotypes from two CTRL subjects with abundant Aβ plaques. Description: (a) Representative high-plex image of astrocytes from a CTRL subject with abundant Aβ plaques; note the differences with AD astrocytes in Fig. 5a. For clarity, only ALDH1L1, EAAT2, and GFAP markers are shown together with Aβ. Scale bar: 100 µm, insets a1–a3: 10 µm. (b) Histograms show the proportion of each astrocyte phenotype in n=2 CTRL subjects with abundant Aβ plaques relative to all their astrocytes as a function of their distance (µm, x axis) to the nearest Aβ plaque. Note that there are equal numbers of astrocytes within 25 µm from the nearest Aβ plaque classified as homeostatic, intermediate, or reactive. (c) Representative high-plex image of microglia from the same field of the same CTRL with abundant Aβ plaques; note the differences when compared to AD microglia in Fig. 5c. For clarity, only IBA1, TMEM119, and CD68 markers are shown together with Aβ. Scale bar: 100 µm, insets c1–c3: 10 µm. (d) Histograms indicate the proportion of each microglial phenotype in n=2 CTRL subjects with abundant Aβ plaques relative to all their microglial profiles as a function of their distance (µm, x axis) to the nearest Aβ plaque. Note that most microglia in the vicinity of Aβ plaques were classified as homeostatic, suggesting that their phenotypic transition to intermediate and reactive had not yet occurred. Figure S7. Differences in neuritic component of Aβ plaques from CTRL and AD subjects. Description: Representative images of Aβ and phospho-tau (PHF1) immunohistochemistry corresponding to the same fields of the AD and CTRL subjects shown in Fig. 5 and Fig. S6, respectively. Note the differences in the PHF1+ neuritic changes between CTRL and AD Aβ plaques. Scale bar: 100 µm, insets a1 and b1: 10 µm. Figure S8. Gradient boosting machine models accurately discriminate between glial phenotypes. Description: Receiver operating characteristic (ROC) curves demonstrate the high discriminative power of the gradient boosting machine (GBM) models to discern between states (i.e., homeostatic vs. intermediate vs. reactive) of (a) astrocytes and (b) microglia based on mean gray intensity (MGI) data from thousands of high-plex single-cell profiles. Rankings of the variable importance scores shown in the horizontal bar plots reveal the most relevant markers for each classification task, respectively. Figure S9. Application of deep learning model interpretability functions to astrocytes with extreme classification probabilities. Description: Examples of the convolutional neural network (CNN) model interpretability functions applied to astrocytes with extreme classification probabilities (i.e., confident and correct predictions). Columns 1 and 5 show DAPI and all astrocyte markers of the high-plex image of a single astrocyte cell body from a CTRL and an AD subject, respectively, after performing the CNN normalization steps described (i.e., segmentation, interpolation, channel-level z-score). Hence, the signal intensity is represented by dynamic range rather than by pixel intensity. Columns 2–4 and 6–8 show the saliency (2 and 6), integrated gradient (3 and 7), and GradCAM (4 and 8) maps, which illustrate the pixels of each marker that the CNN considered most important for the classification of these two astrocytes as CTRL or AD. Figure S10. Application of deep learning model interpretability functions to microglia with extreme classification probabilities. Description: Examples of the convolutional neural network (CNN) model interpretability functions applied to microglia with extreme classification probabilities (i.e., confident and correct predictions). Columns 1 and 5 show DAPI and all microglial markers of the high-plex image of a single microglial cell from a CTRL and an AD subject, respectively, after performing the CNN normalization steps described (i.e., segmentation, interpolation, channel-level z-score). Hence, the signal intensity is represented by dynamic range rather than by pixel intensity. Columns 2–4 and 6–8 show the saliency (2 and 6), integrated gradient (3 and 7), and GradCAM (4 and 8) maps, which illustrate the pixels of each marker that the CNN considered most important for the classification of these two microglia as CTRL or AD.Ministerio de Ciencia, Innovación y Universidades Real Colegio Complutense National Institute on Aging Alzheimer's Association.Peer reviewe

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    No full text
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% 47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% 32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% 27.9-42.8] and 33.3% 25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
    corecore