4,078 research outputs found
Hybrid perturbation/Bubnov-Galerkin technique for nonlinear thermal analysis
A two step hybrid analysis technique to predict the nonlinear steady state temperature distribution in structures and solids is presented. The technique is based on the regular perturbation expansion and the classical Bubnov-Galerkin approximation. The functions are obtained by using the regular perturbation method. These functions are selected as coordinate functions and the classical Bubnov-Galerkin technique is used to compute their amplitudes. The potential of the proposed hybrid technique for the solution of nonlinear thermal problems is discussed. The effectiveness of this technique is demonstrated by the effects of conduction, convection, and radiation modes of heat transfer. It is indicated that the hybrid technique overcomes the two major drawbacks of the classical techniques: (1) the requirement of using a small parameter in the regular perturbation method; and (2) the arbitrariness in the choice of the coordinate functions in the Bubnov-Galerkin technique. The proposed technique extends the range of applicability of the regular perturbation method and enhances the effectiveness of the Bubnov-Galerkin technique
Shear-flexible finite-element models of laminated composite plates and shells
Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters
Delay-Exponent of Bilayer Anytime Code
In this paper, we study the design and the delay-exponent of anytime codes
over a three terminal relay network. We propose a bilayer anytime code based on
anytime spatially coupled low-density parity-check (LDPC) codes and investigate
the anytime characteristics through density evolution analysis. By using
mathematical induction technique, we find analytical expressions of the
delay-exponent for the proposed code. Through comparison, we show that the
analytical delay-exponent has a close match with the delay-exponent obtained
from numerical results.Comment: Accepted for presentation in ITW-2014. 5 Pages, 3 Figure
Finite Length Analysis of LDPC Codes
In this paper, we study the performance of finite-length LDPC codes in the
waterfall region. We propose an algorithm to predict the error performance of
finite-length LDPC codes over various binary memoryless channels. Through
numerical results, we find that our technique gives better performance
prediction compared to existing techniques.Comment: Submitted to WCNC 201
Free vibrations of thin-walled semicircular graphite-epoxy composite frames
A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modelled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frames. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a 1-D thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions
Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera
Gaining a genomic perspective on phylogeny requires the collection of data
from many putatively independent loci collected across the genome. Among
insects, an increasingly common approach to collecting this class of data
involves transcriptome sequencing, because few insects have high-quality genome
sequences available; assembling new genomes remains a limiting factor; the
transcribed portion of the genome is a reasonable, reduced subset of the genome
to target; and the data collected from transcribed portions of the genome are
similar in composition to the types of data with which biologists have
traditionally worked (e.g., exons). However, molecular techniques requiring RNA
as a template are limited to using very high quality source materials, which
are often unavailable from a large proportion of biologically important insect
samples. Recent research suggests that DNA-based target enrichment of conserved
genomic elements offers another path to collecting phylogenomic data across
insect taxa, provided that conserved elements are present in and can be
collected from insect genomes. Here, we identify a large set (n1510) of
ultraconserved elements (UCE) shared among the insect order Hymenoptera. We use
in silico analyses to show that these loci accurately reconstruct relationships
among genome-enabled Hymenoptera, and we design a set of baits for enriching
these loci that researchers can use with DNA templates extracted from a variety
of sources. We use our UCE bait set to enrich an average of 721 UCE loci from
30 hymenopteran taxa, and we use these UCE loci to reconstruct phylogenetic
relationships spanning very old (220 MYA) to very young (1 MYA)
divergences among hymenopteran lineages. In contrast to a recent study
addressing hymenopteran phylogeny using transcriptome data, we found ants to be
sister to all remaining aculeate lineages with complete support
Dual tasking in Parkinson's disease: cognitive consequences while walking
Published in final edited form as: Neuropsychology. 2017 September; 31(6): 613–623. doi:10.1037/neu0000331.OBJECTIVE: Cognitive deficits are common in Parkinson's disease (PD) and exacerbate the functional limitations imposed by PD's hallmark motor symptoms, including impairments in walking. Though much research has addressed the effect of dual cognitive-locomotor tasks on walking, less is known about their effect on cognition. The purpose of this study was to investigate the relation between gait and executive function, with the hypothesis that dual tasking would exacerbate cognitive vulnerabilities in PD as well as being associated with gait disturbances.
METHOD: Nineteen individuals with mild-moderate PD without dementia and 13 age- and education-matched normal control adults (NC) participated. Executive function (set-shifting) and walking were assessed singly and during dual tasking.
RESULTS: Dual tasking had a significant effect on cognition (reduced set-shifting) and on walking (speed, stride length) for both PD and NC, and also on stride frequency for PD only. The impact of dual tasking on walking speed and stride frequency was significantly greater for PD than NC. Though the group by condition interaction was not significant, PD had fewer set-shifts than NC on dual task. Further, relative to NC, PD showed significantly greater variability in cognitive performance under dual tasking, whereas variability in motor performance remained unaffected by dual tasking.
CONCLUSIONS: Dual tasking had a significantly greater effect in PD than in NC on cognition as well as on walking. The results suggest that assessment and treatment of PD should consider the cognitive as well as the gait components of PD-related deficits under dual-task conditions. (PsycINFO Database Record)
- …