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Abstract 
A detailed study is made of the effects of vari-

ations in lamination and material parameters of 
thin-walled composite frames on their vibrational 
characteristics. The structures considered are semi-
circular thin-walled frames with I and J sections. 
The flanges and webs of the frames are modeled 
by using two-dimensional shell and plate finite ele-
ments. A mixed formulation is used with the fun-
damental unknowns consisting of both the general-
ized displacements and stress resultants in the frame. 
The frequencies and modes predicted by the two-
dimensional finite-element model are compared with 
those obtained from experiments, as well as with the 
predictions of a one-dimensional, thin-walled-beam, 
finite-element model. A detailed study is made of 
the sensitivity of the vibrational response to varia-
tions in the fiber orientation, material properties of 
the individual layers, and boundary conditions. 

Introduction 
The physical understanding and the numerical 

simulation of the dynamic response of laminated 
anisotropic structures have recently become the fo-
cus of intense efforts because of the expanded use 
of fibrous composites in the aerospace, automotive, 
shipbuilding; and other industries, and because of 
the need to establish the practical limits of the dy-
namic load-carrying capability of structures made 
from these materials. Experimental studies have 
been conducted on the free vibration and impact re-
spouse of thin-walled composite frames and stiffeners 
(e.g., see Boitnott et al. 1987; Boitnott and Fasanella 
1989; Collins and Johnson 1989; and Chandra, Ngo, 
and Chopra 1988). One-dimensional theories have 
been developed for the static, vibration, and buckling 
analyses of thin-walled-frame structures (e.g., Vlasov 
1961; Gjèlsvik 1981; Nowinski 1966; and Panovko 
and Beilin 1969). However, no systematic assessment 
has been made of the range of validity of the basic 
assumptions of these theories. Approximate analyt-
ical and numerical techniques have been applied to 
the study of the vibrational response of Isotropic and 
composite stiffeners (e.g., see Hasan and Barr 1974; 
Vermisyan and Galin 1972; Rao 1975; Vasilenko and 
Trivailo 1980; Narayanan, Verma, and Mallik 1981; 
Ali 1984; Gupta, Venkatesh, and Rao 1985; Potiron 
et al. 1985; Rückschloss 1985; Wekezer 1987; Reh-
field, Atilgan, and Hodges 1990; Stemple and Lee 
1988; and Bishop, Cannon, and Miao 1989). Few 
publications exist in which the effects of variations 
in lamination and geometric parameters of composite 
panels on their vibrational characteristics are studied 
(see Teh and Huang 1980 and Bank and Kao 1989).

However, none of these publications consider thin-
walled composite frames. 

The present study is an attempt to fill this void. 
Specifically, the objective of this paper is to sum-
marize the results of a recent study on the effects 
of variations in the lamination and of geometric pa-
rameters of thin-walled composite frames on their 
vibrational characteristics (frequencies, and energy 
components associated with different modes). The 
frames considered are semicircular, are made of thin-
walled graphite-epoxy material with I and J sections, 
and have a 36-in, radius (see fig. 1). 

Symbols 
A	 cross-sectional area of one-

dimensional-beam model 

A, A effective shear areas for one-
dimensional-beam model in y-
and z-directions, respectively 

All extensional stiffness of laminate 
(flanges or web) in x1-direction 

A33 in-plane shear stiffness of 
laminate 

Bw bimoment in one-dimensional-
beam model

b, b 1 , b2 ,	 flange (or skin) dimensions (see 
b3, b4	 tables 2 and 3) 

Cj	 multipliers (see eqs. (5) and (7)) 

d, d1 , d2	 web dimensions (see tables 2 
and 3) 

E, C	 effective Young's and shear 
moduli of equivalent isotropic 
material 

EL, ET	 elastic moduli of individual layers 
of laminate (flanges or web) in 
direction of fibers and normal to 
it, respectively 

[F]	 matrix of linear flexibility coeffi-
cients for an individual element 

GLT, GTT	 shear moduli in plane of fibers 
and normal to it, respectively 

{H}	 vector of stress resultant (or 
internal force) parameters 

h	 total thickness of laminate 

h1 , h2 , h3 ,	 wall thicknesses (see tables 2 
h4 ,h51 h6)	 and 3) 
h7 



ly ' Iz, Iyz 

I", 

J 

K 

[k] 

M, M, Mt 

M 1 , M2, 
M 12 , M21 

[M],[Ai] 

N1 , N2 , N12 

NL 

N 

[P];[Q] 

Q1, Q2 

R 

Ri 

[S] 

Uc 

Utf, U, Ubf 

second moments of cross section U1, U2 complementary strain-energy 
(moments and product of inertia) components associated with in-
of one-dimensional-beam model plane and out-of-plane forces, 

principal second sectorial mo-
respectively 

ment of cross section of one- U3 complementary strain-energy 
dimensional-beam model component associated with forces 

Saint-Venant torsion constant of neglected in one-dimensional-

cross section of one-dimensional- beam model 

beam model U, v, w displacement components in 
kinetic energy coordinate directions for one-

dimensional-beam model 
generalized stiffness matrix for an 
individual element (see eqs. (3)) u°, v°, w0 axial and transverse displace-

length of individual finite element merits of one-dimensional-beam 
model at y = z	 0 

bending and twisting moments in 
one-dimensional-beam model u, U2, w displacement components of two- 

dimensional model in x, X2, X3 
bending stress resultants in two- coordinate directions 
dimensional model 

consistent and generalized u'1, u'2 , w displacement components of two- 

mass matrices for an individual dimensional model in x, x, x'3 

element (see eqs. (3)) coordinate directions 

extensional stress resultants in {X} vector of nodal displacements 
two-dimensional model x, y, z centroidal orthogonal coordinate 
total number of layers system used for one-dimensional- 

axial force in one-dimensional-
beam model 

beam model X1, x2, X3 local orthogonal coordinate 

matrices associated with con- system used in conjunction with 

straint condition and regulariza- two-dimensional model (for the 
tion term in the functional for web and each of the two flanges) 

one-dimensional-beam model x'1, x, x'3 global Cartesian coordinates used 
transverse shear forces in one- for two-dimensional model 
dimensional-beam model

{ Z} vector of element degrees of 
transverse shear stress resultants freedom 
in two-dimensional model

{} particular solution (see eqs. (5) 
radius of curvature of center- and (7)) 
line of frame (used in one-
dimensional-beam model) 7XY Yxz, transverse shear strains in 

outer radius of curvature of frame
o	 0 

'v one-dimensional-beam model (see 

(see fig. 1) eqs. (A2)) 

strain-displacement matrix for E penalty parameter 
individual element extensional strain in one-
total complementary strain dimensional-beam model 
energy of frame 0 extensional strain of centerline of 
contributions of top flange, web, one-dimensional-beam model 
and bottom flange (including 
skin) to total complementary 0 angle that a typical cross section 
strain energy of frame makes with x, x'2 plane
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00 rate of twist of one-dimensional-
beam model 

,, ,c, curvature changes and twist of 
one-dimensional-beam model 

{A} vector of Lagrange multiplier 
parameters 

A Lagrange multiplier 

lamination and material 
parameters 

11LT major Poisson's ratio of 
individual layers 

a , 01, 0'XZ normal and shearing stresses on 
cross section of beam 

HR functionals defined in equa-
tions (A7) and (A8) 

P mass density of material 

01,02 rotation components of two-
dimensional model referred to 
local coordinate system x, x2 

011,	 , 013 rotation components of two-
dimensional model referred 
to global coordinate system 

,	 '	 ' x1, x
2 , x3 

0OX ,	 , 00Z rotation components in one-
dimensional-beam model 

strain parameter in one-
dimensional-beam model 

w frequency of vibration 

sectorial coordinate (warping of 
cross section for a unit rate of 
twist) 

8 nd/dx 

1D one-dimensional-beam model 

2D two-dimensional model 

Subscript: 

s shear center 

Superscript: 

t matrix transposition 

Analysis 
Computational Models
Two computational models are used for the thin-

walled composite frames considered in the present

study. In the first model, the flanges and web are 
modeled by using two-dimensional shell and plate 
finite elements. The second model is a finite-element 
discretization of the one-dimensional Vlasov type 
thin-walled-beam theory. Herein, the two models 
are referred to as two-dimensional (21)) and one-
dimensional (11)) finite-element models, respectively. 

Mathematical Formulation 

Two-dimensional models. The analytical for-
mulation for the two-dimensional models is based 
on the Sanders-Budiansky shell theory with the ef-
fects of transverse shear deformation, and laminated 
anisotropic material response included. A mixed 
formulation is used in which the fundamental un-
knowns consist of the generalized displacements and 
the stress resultants in the frame. (See fig. 2 for the 
sign convention.) 

Bicubic shape functions are used to approximate 
each of the generalized displacements and stress re-
sultants. There are 16 displacement nodes and 128 
stress-resultant parameters in each element. The 
stress resultants are allowed to be discontinuous at 
interelement boundaries. The element characteristic 
arrays are obtained by using the two-field, Hellinger-
Reissner, mixed-variational principle. 

One-dimensional models. The analytical for-
mulation for one-dimensional models is based on a 
form of the Vlasov thin-walled-beam theory with the 
effects of flexural-torsional coupling, transverse shear 
deformation, and rotary inertia included. The fun-
damental unknowns consist of seven internal forces 
and seven generalized displacements of the beam (see 
fig. 3 for the sign convention). The element char-
acteristic arrays are obtained by using a modified 
form of the Hellinger-Reissner mixed variational prin-
ciple. The modification consists of augmenting the 
functional of that principle by two terms: (1) the 
Lagrange multiplier associated with the constraint 
condition relating the rotation of the cross section 
and the twist degrees of freedom, and (2) a reg-
ularization term that is quadratic in the Lagrange 
multiplier. Only C° continuity is required for the 
generalized displacements. Lagrangian interpolation 
functions are used for approximating each of the gen-
eralized displacements, internal forces, and Lagrange 
multiplier. The polynomial functions for the inter-
nal forces and the Lagrange multiplier are one degree 
lower than those of the generalized displacements. In 
the present study, quadratic polynomials are used in 
approximating the generalized displacements. Linear 
polynomials are used in approximating each of the 
internal forces and the Lagrange multiplier. The in-
ternal forces and the Lagrange multiplier are allowed

- 
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to be discontinuous at interelement boundaries. For 
each element, the total number of generalized dis-
placement parameters is 21, the total number of in-
ternal force parameters is 14, and the total number of 
Lagrange multiplier parameters is 2. The fundamen-
tal equations of the thin-walled-beam theory used in 
the present study are given in Noor, Peters, and Mm 
(1989) and are summarized in the appendix. 

For quasi-isotropic laminated composites, numer-
ical experiments to be described subsequently have 
demonstrated that reasonably accurate results can 
be obtained with the one-dimensional model when 
the laminated composite is replaced by an equiva-
lent isotropic material with the following Young's and 
shear moduli:

Array Two-dimensional models One-dimensional models 

{Z} 1H
{H. 

X 

[k] 1_F -FS	 .1 
QI [St	 .] Qt 	 ] 

M [	 1*	
]

E = A11 1h	 (1) 
C = A33/h	 (2) 

where All and A33 are the extensional stiffness in 
the x-direction and the in-plane shear stiffness used 
in the classical lamination theory, and where h is 
the total wall thickness (of the flange or web). This 
approximation was adopted in the present study. 

Finite-Element Equations 

The finite-element equations for each individual 
element of the two-dimensional and one-dimensional 
models can be cast in the following compact form: 

([k] - w2 []) {Z} = 0	 (3) 

where {Z} is the vector of the element degrees of free-
dom, w is the frequency of vibration, and [k] and [At] 
are the generalized stiffness and mass matrices. The 
forms of {Z}, [k], and [icr] are defined in the follow-
ing table, where {H}, {X}, and {A} are the vectors of 
stress-resultant (or internal force) parameters, nodal 
displacements, and Lagrange multiplier parameters, 
respectively; [F] is the matrix of linear flexibility co-
efficients; [Sj is the strain displacement matrix; [P] 
and [Q] are matrices associated with the constraint 
condition and the regularization term in the func-
tional, respectively; [M] is the consistent mass ma-
trix; s is a penalty parameter associated with the 
regularization term; superscript t denotes transposi-
tion; and a dot (.) refers to a zero submatrix. The 
explicit form of the arrays in the following table is 
given in Noor and Andersen (1982) and Noor and 
Peters (1983) for the two-dimensional models and in 
Noor, Peters, and Mm (1989) for the one-dimensional 
models:

Sensitivity of Vibrational Response to 
Variations in Lamination and Material 
Parameters 

The expressions for the sensitivity derivatives of 
the frequency and response vectors with respect to 
the lamination and material parameters X of the 
composite frames are given by (Nelson 1976) 

(o[k]2a[M]'\ 
aAj-= 	 ml- 

w ---) 
{Z} (4)

Elements  
and

{Z} -
{}+cj {Z}	 (5) - 

where {} represents a particular solution of the 
equations 

([k]_w2 [I)	 = 

/ a[k]	 20[M] aw2	
){z} (6) -----w -----[M] 

and cj are multipliers given by 

= -	 (1^111mlfzl + {Z}t 
Iam] 

{Z}) 
Elements

(7) 
In equations (4) to (7), the eigenvectors are as-

sumed to be normalized with respect to [a]; that 
is,

{Z}t[]{Z} = 1	 (8) 

The expressions for the total complementary 
strain energy of the frame UC and its derivatives with 
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respect to Ai are given by 

Uc =	 {H}t[F]{H}	 (9) 
Elements 

and

>1 ({H}t4'I{H} 

— Elements 

I 
+ c9-

H
[F]{H})	 (10) 

For the purpose of obtaining analytic derivatives with 
respect to some of the lamination parameters, such 
as the fiber orientation angle of different layers, it 
is convenient to express j1 in terms of 9[F] 1 as 

follows:

a[F] = _[F]'	 [F]	 (11) 
19Ai	

\i

a(F1-1 The matrix	 is evaluated using the analytical 
derivatives of the material stiffness matrix of each 
laminate (flanges and web). The material stiffness 
matrix of the laminate is given in Jones (1975). 

Experimental and Numerical Studies 

Apparatus and Test Procedure 

Specimens. Two specimens, an I-section and a 
J-section frame (fig. 4), were tested in the present 
study. Nominal dimensions of each cross section are 
given in figure 1. Weights of the frame sections were 
3.181 lb and 4.085 lb for the I and J frames, respec-
tively. The frame sections were made from AS4/5208 
graphite-epoxy unidirectional tape laid up in a man-
ner that resulted in essentially uniform stiffness prop-
erties in the circumferential direction (i.e., the stiff-
ness coefficients are independent of 0). The ma-
terial properties for the individual layers are given 
in figure 1. The laminate stacking sequence was 
[±45/0/90] for the I-section and [±45/0/90]2 for 
the J-section. Each frame section was semicircu-
lar with a diameter of 72 in. Bonded to the out-
side flange of each frame was a 16-ply [±45/0/90]2, 
quasi-isotropic skin made of the same material. The 
frame sections were constructed so that the skin 
would extend 0.5 in. beyond each side of the bottom 
flange of the frame. The nominal dimensions of the 
I- and J-section frames are given in figure 1, and the 
actual (measured) dimensions are given in tables 1 
and 2. 

Apparatus and procedure. Figure 5 is a 
schematic of the experimental setup, and figure 4 is a 
photograph of the setup and specimens. The ends of

the frame sections were potted in a fixture that was 
bolted to a large steel-beam backstop. (See fig. 4.) 

An air shaker, connected to an air compressor, 
was used to excite all test specimens. Excitation was 
both in plane (radially) and out of plane. For in-
plane excitation, the shaker was positioned so that 
the pulses of air struck approximately normal to the 
surface of the skin. For out-of-plane excitation, a 
piece of Dow Chemical Co. Styrofoam was attached 
to the side of the frame by double-sided adhesive 
tape. Pulses of air struck the flat face of the Sty-
rofoam normal to the face. The position of the air 
shaker was adjusted when the excitation was striking 
on a node. 

A miniature accelerometer was attached at a fixed 
location to the frame sections with double-sided ad-
hesive tape. Output from the accelerometer was am-
plified and displayed along the vertical axis of an os-
cilloscope. Natural modes were determined by tuning 
the excitation frequency of the air shaker to produce 
a maximum acceleration of the vertical deflection on 
the oscilloscope. Output also passed through a low-
pass filter and was displayed as vibrational frequency 
on a frequency counter. 

A hand-held velocity probe was moved along the 
frame to determine node locations and mode shapes. 
The output of the probe was displayed along the 
horizontal axis of the oscilloscope. The probe and 
accelerometer outputs combined to create a Lissajous 
pattern on the oscilloscope. A phase shift in the 
Lissajous pattern occurred when the velocity probe 
passed over a node. 

The nodal locations were mapped manually dur-
ing the vibration survey of the frames. Consequently, 
the only nodal lines monitored were those associ-
ated with gross in-plane and out-of-plane motions. 
Other nodal lines, associated with localized defor-
mation patterns, were not surveyed. These localized 
deformations were noticeable in some of the higher 
vibration modes, with complex deformation patterns 
and/or strong coupling between in-plane and out-of-
plane motions. 

Finite-Element Grids 
Two-dimensional models were generated for the 

actual frames (test specimens) described in the pre-
ceding section and for the corresponding frames with 
nominal dimensions. Herein, the frames with actual 
and nominal dimensions will be referred to as the 
actual and nominal frames, respectively. For the ac-
tual frames, spline interpolations were used to gener-
ate the wall thicknesses and coordinates of the nodal 
points. Isopararnetric finite elements were used to 
approximate the variations in stiffness and geome-
try. The one-dimensional models considered herein

- 
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are for the frames with nominal dimensions. The 
grids used for both the one-dimensional and two-
dimensional models are described subsequently. 

Two-dimensional models. An 18 x 8 grid was 
used for modeling the whole I-section frame. In this 
grid, two elements were used to model each of the 
web, top flange, and bottom flange sections. The 
part of the skin adjacent to the bottom flange section 
was treated as part of the flange. One element was 
used to model each of the two parts of the skin section 
that extended beyond the bottom flange. (See fig. 1.) 
The middle surfaces of the top flange and the web 
were taken to be their reference surfaces. The middle 
surface of the combined bottom flange and skin was 
taken to be the reference surface. 

An 18 x 7 grid was used for modeling the whole 
J-section frame. The distribution of the elements was 
similar to that for the I-section frame. Only one 
element was used to model the top flange section. 
(See fig. 1.) 

Totally clamped and partially clamped support 
conditions were considered. For totally clamped 
supports, all six generalized displacements were re-
strained (u = u'2 = w' = = q5 = = 0). The 
partially clamped conditions were obtained from the 
totally clamped case by successively removing the re-
straints on one, as well as on combinations, of the 
displacement and rotation components. 

One-dimensional models. A uniform grid 
of 24 elements was used in modeling each of the 
I-section and J-section frames. The principal sec-
tonal properties of the cross section were evaluated 
with the Fortran program listed in Coyette 1987. 

Identification of Modes and Estimation of 
Error in One-Dimensional-Model 
Predictions 
The two-dimensional models can be used to iden-

tify the in-plane, out-of-plane, and coupled modes 
and to estimate the error in the predictions of the 
one-dimensional models. These objectives can be 
accomplished by decomposing the complementary 
strain energy UC (eq. (9)) associated with each vi-
bration mode into three components, U1 , U2 , and 
U3 (see table 3). The first two components, U1 
and U2 , are associated with the in-plane and out-
of-plane stress resultants, respectively. The third 
component, U3 , is associated with the stress resul-
tants that are peculiar to two-dimensional plates and 
shells (not present in one-dimensional-beam models). 
The in-plane and out-of-plane modes correspond to 
the modes for which U1 /U' and U2 /U' are close to 
1, respectively. The strongly coupled modes corre-
spond to nearly equal values of U1 1U' and U21Uc.

-

-

-
-

- 

Loll

The ratio U3 1Uc is indicative of the error in the one-
dimensional-model predictions. 

It is also useful to partition the total complemen-
tary strain energy associated with each mode into 
three components, U1, U, and Ubf; these compo-
nents represent the contributions of the top flange, 
web, and bottom flange (including the skin). 

Comparison of Experimental and 
Finite-Element Results 
The results of the experimental and numeri-

cal studies are summarized in figures 6 to 10 and 
table 4 for the I-section frame, and in figures 11 to 15 
and table 5 for the J-section frame. Figures 6(a) and 
11(a) are bar charts for the experimental frequencies 
and the frequencies obtained by the two-dimensional 
finite-element model for the actual I-section and 
J-section frames, respectively. For the finite-element 
model, three cases are considered—totally clamped 
edges (with both translational and rotational re-
straints), partially clamped edges with 0'2 not re-
strained, and partially clamped edges with '4 in the 
flanges and 4 not restrained. 

The maximum and minimum values of the fre-
quencies obtained by the two-dimensional finite-
element model (corresponding to the totally clamped 
and partially clamped edges) are shown in fig-
ures 6(b) and 11(b), along with the experimental fre-
quencies. (See also tables 4 and 5.) The experimen-
tal frequencies associated with modes 9 and 10 of the 
I-section frame, and with modes 9, 10, and 11 of the 
J-section frame, respectively, are close in frequency 
and have very close nodal locations. Henceforth these 
modes will be referred to collectively as mode 9. Also, 
the 12th mode of the I-section frame (table 4) was 
missed in the experimental survey, which is indicative 
of the difficulty of determining the high-frequency 
modes. The nodal locations of the succeeding ex-
perimental frequency for both the I- and J-section 
frames are close to those of the finite-element model. 
The fact that only one of the multiple experimental 
frequencies with close nodal locations is predicted by 
the finite-element model may be attributed to imper-
fections in lamination and material properties and/or 
to geometric nonlinearities that were not incorpo-
rated into the finite-element model. Figures 6(c) 
and 11(c) are bar charts for the frequencies obtained 
by two-dimensional models of the actual and nomi-
nal frames along with those of the one-dimensional 
model. 

Figures 7 and 12 are bar charts of the two decom-
positions of the complementary strain energies, asso-
ciated with the different vibration modes, described 
in the preceding section. The ordinates in figures 7(a) 
and 12(a) represent the ratios of U1 /U' , U2 1Uc , and



U3 1UC , and the ordinates in figures 7(b) and 12(b) 
represent the ratios of U 1/Uc , U,/Uc , and Ubf/UC 
for each of the modes. 

The mode shapes associated with the first 10 fre-
quencies are shown in figures 8 and 13. Three views 
are shown for the deformations associated with each 
mode -side view, top view, and end view. Also 
shown are the nodal lines of the w' displacement 
on the top and bottom flanges. As can be seen 
in figures 8 and 13, the deformation patterns asso-
ciated with higher modes are fairly complex. As 
mentioned previously, the only experimental nodal 
lines monitored are those associated with gross in-
plane and gross out-of-plane motions. Generally, 
good agreement between the finite-element and ex-
perimental nodal lines is observed in these cases. 
Other nodal lines, associated with localized deforma-
tions, are shown only for the finite-element solutions. 

The sensitivities of the vibration frequencies to 
the fiber orientation angles of the top flange, web, 
and bottom flange and skin are depicted in figures 9 
and 14. The ordinates in figures 9 and 14 represent 
the sensitivity derivatives with respect to the indi-
cated fiber angles. Each of the sensitivity derivatives 
is normalized by dividing it by the corresponding fre-
quency of vibration. The sensitivities of the vibra-
tion frequencies to the material parameters EL, ET, 
GLT, and GTT are shown in figures 10 and 15. The 
ordinates in figures 10 and 15 represent the sensi-
tivity derivatives with respect to the indicated elas-
tic moduli. Each of the sensitivity derivatives is di-
vided by the corresponding frequency and multiplied 
by the corresponding elastic modulus. The effects of 
boundary conditions on the frequencies obtained by 
the two-dimensional finite-element model are shown 
in tables 4 and 5. 

An examination of the experimental and finite-
element results (figs. 6 to 15 and tables 4 and 5) 
reveals the following: 

1. Reasonably good correlation is observed be-
tween numerical simulation and experiment for the 
I-section frame (fig. 6(a)). The ratios of the first 
five experimental frequencies to the corresponding 
finite-element frequencies ranged from 0.90 to 1.00 
(table 4). For the J-section frame, the correlation is 
not as good (fig. 11(a)). The corresponding ratios 
for the first five frequencies were from 0.86 to 1.01 
(table 5). 

2. Most of the experimental frequencies for the 
I-section frame and the J-section frame are between 
those for the totally and partially clamped supports 
(with both u'1 in the flanges and not restrained), 
especially for the higher modes. For some of the 
modes, the experimental frequencies are closer to 
the partially clamped support case (e.g., modes 5,

7, 10, 12, and 13 (fig. 11(b))). For the I- and 
J-section frames, the finite-element model predicted 
only one of the multiple experimental modes with 
close nodal lines. The other experimental frequencies 
were between those for the totally and partially 
clamped supports (with both uç in the flanges and 
0 not restrained (figs. 6(b) and 11(b))). 

3. The lowest five frequencies obtained by the 
one-dimensional model are reasonably close to those 
obtained by the corresponding two-dimensional 
model, especially for the J-beam, where the errors 
in the predictions of the one-dimensional model were 
well below 10 percent. (See figs. 6(c) and 11(c).) 

4. Identification of the modes as in plane or out 
of plane can best be accomplished by examining the 
energy components, Ui/UC and U2/Uc, associated 
with the in-plane and out-of-plane forces, respec-
tively (figs. 7(a) and 12(a)). Also, the minimum er-
ror to be expected when using one-dimensional thin-
walled beams can be estimated by computing the 
ratio of the energy associated with the forces ne-
glected in thin-walled beams to the total energy 
U3 1Uc . (See figs. 7(a) and 12(a).) 

5. The coupling between in-plane and out-
of-plane deformations is more pronounced in the 
J-section frame than in the I-section frame. For ex-
ample, the first 20 modes for the I-section frame had 
either Ui/Uc or U2/Uc > 0.75. On the other hand, 
only modes 1 to 4, 6, 8, and 10 in the J-section 
frame had Ui /UC or U2 /Uc > 0.75. For the higher 
modes, neither Ui /UC nor U2 /U' was close to 1. (See 
figs. 7(a) and 12(a).) 

6. For the I-section frame, the contributions of 
the top and bottom flanges to the total energy asso-
ciated with different modes far exceeded that of the 
web. The ratio of the strain energy in the web to the 
total strain energy was less than 0.20 for the first 10 
modes (fig. 7(b)) and less than 0.28 for the succeeding 
10 modes. For the J-section frame, the strain-energy 
ratio in the web approached 0.4 in some of the modes 
(fig. 12(b)). 

7. For the I-section frame, the strain energy of 
the top flange is the dominant energy in the in-
plane deformation modes, and the strain energy of 
the bottom flange (including the skin) dominates for 
the out-of-plane deformation modes. (See fig. 7(b).) 

8. The vibrational response of both the I-section 
and J-section frames is very sensitive to restraining 
the ul displacements of the flanges (and skin). It is 
somewhat sensitive to the rotational restraint on 
(See tables 4 and 5.) However, it is less sensitive to 
restraining the displacement components u'2 and w' 
and the rotation 4. 

9. The vibrational response of the I-section frame 
and J-section frame is more sensitive to variations 
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in the 45° or —45° fiber angles than to variations 
in the 00 or 90° fiber angles. The variations in the 
QO and 90° fibers of the web and the bottom flange 
have a noticeable effect on some of the modes, but 
their effect is generally less than that of the 45° and 
—45° fibers. (See figs. 9 and 14.) The vibrational 
response is also more sensitive to variations in the 
elastic moduli EL and GLT than to any of the other 
material coefficients. (See figs. 10 and 15.) 

10. The sensitivity of the vibration frequencies 
with respect to variations in both EL and GLT is al-
most the same for all the modes. (See figs. 10 and 15.) 
This uniform sensitivity may be attributed to the 
quasi-isotropic lamination used for both the flanges 
and the web. It suggests the feasibility of replacing 
the quasi-isotropic composite, in the one-dimensional 
thin-walled-beam model, with an equivalent isotropic 
material, as was done in the present study. 

Comments on Sources of Errors and 
Model Adjustment Techniques 

Sources of Errors 

The determination of natural frequencies and 
modes from vibration tests and numerical models in-
volves numerous possible sources of discrepancies or 
errors that are related to mechanical and equipment 
limitations and to theoretical and physical assump-
tions. The errors in vibration tests include inexact 
equipment calibration, excessive noise, manufactur-
ing variations, incorrect transducer locations, and op-
eration in a region of nonlinearity of the response. 
Numerical modeling errors can be attributed to in-
accuracies in estimated material properties and to in-
sufficient modeling detail. In the present study, care 
was exercised in collecting and recording the vibra-
tion test data and in the selection of the numerical 
model. However, nominal material properties and 
lay-ups (fiber orientation of the different layers) were 
used in the numerical model. The sensitivity analysis 
helped identify the material and lamination parame-
ters that need to be accurately determined. 

Model Adjustment Techniques 

In recent years, considerable efforts have been 
directed at improving and modifying the numerical 
model to obtain a better correlation with test results. 
These efforts started as trial-and-error approaches 
and evolved into systematic system identification 
and model adjustment techniques. Although these 
model adjustment techniques have not been used in 
the present study, the techniques are particularly 
useful for validating numerical models to be used in 
simulating transient dynamic response.

Most of the model adjustment techniques are 
based on using the experimental modal data ( mea-
sured eigenvalues and eigenvectors) to update the 
stiffness and/or mass matrices of the structure (e.g., 
see Berman 1979; Chen 1979; Wei 1980; Berman and 
Wei 1981; Baruch 1982; Grossman 1982; Berman 
and Nagy 1983; Jensen and Crawley 1984; Kabe 
1985; and Arruda and dos Santos 1989) and the two 
monographs (Ewins 1986 and Martinez and Miller 
1985). In some of the recent techniques, the sensitiv-
ity derivatives with respect to the physical parame-
ters of the numerical model are used in conjunction 
with optimization algorithms to obtain corrected (or 
adjusted) values of the physical parameters. 

Conclusions 

A detailed study is made of the effects of vari-
ations in lamination and material parameters of 
thin-walled composite frames on their vibrational 
characteristics. The structures considered are semi-
circular thin-walled frames with I- and J-section 
frames. The flanges, web, and skin of the stiffen-
ers have quasi-isotropic laminations and the fiber 
orientation is made up of combinations of ±45°, 
0°, and 90° layers. Two computational models are 
used for predicting the vibrational characteristics. In 
the first model, the flanges and webs of the stiff-
eners are modeled by using two-dimensional shell 
(and plate) finite elements. The second model is a 
finite-element discretization of the one-dimensional 
Vlasov-type thin-walled-beam theory. A mixed for-
mulation is used with the fundamental unknowns 
consisting of both the generalized displacements and 
stress resultants (or internal forces) in the frame. 
The frequencies and modes predicted by the compu-
tational models are compared with those obtained 
from experiments. A detailed study is made of 
the sensitivity of the vibration response to vari-
ations in the fiber orientation, material proper-
ties of the individual layers, and boundary condi-
tions. On the basis of this study, the following 
conclusions are justified: 

1. For some of the higher vibration modes, the 
experimental frequencies for thin-walled frames are 
generally between those for the totally and partially 
clamped supports. 

2. Identification of the modes as in plane or out 
of plane can best be accomplished by examining the 
energy components associated with the in-plane and 
out-of-plane forces. Also, the minimum error to 
be expected when using one-dimensional thin-walled 
beams can be estimated by computing the ratio of 
the energy associated with the forces neglected in 
thin-walled beams to the total energy. 

- 
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3. For quasi-isotropic composite frames, the vi-
bration frequencies, associated with the lower modes, 
can be accurately predicted by an isotropic one-
dimensional-beam model (with effective elastic mod-
uli). The accuracy of predictions is dependent on the 
cross-sectional distortions during the beam deforma-
tions. As the cross-sectional distortions increase, the 
degradation of accuracy becomes more pronounced. 

4. The vibrational response of thin-walled semi-
circular frames is very sensitive to restraining the 
U1 displacement component of the flanges along the 
length of the frame. It is somewhat sensitive to 
the restraint on the associated rotation component. 
However, it is less sensitive to restraining the other 
displacement and rotation components. 

5. The vibrational response of thin-walled com-
posite frames with quasi-isotropic laminations is 
more sensitive to variations in the +45° or —45° fiber 
angles than to variations in the 00 or 90° fiber angles.

Variations in the 00 and 90° fibers of the web and the 
bottom flange have a noticeable effect on some of the 
modes, but their effect is generally less than that of 
the 450 and —45° fibers. The vibrational response is 
also more sensitive to variations in the material co-
efficients EL and GLT than to all other coefficients. 

6. The sensitivity of the vibration frequencies 
with respect to variations in the elastic moduli EL 
and GLT is almost the same for all the modes be-
cause of the quasi-isotropic lamination used for both 
the flanges and the web. It suggests the feasibility 
of replacing the quasi-isotropic composite with an 
equivalent isotropic material in the one-dimensional 
thin-walled-beam analysis, as was done in the present 
study. 

NASA Langley Research Center 
Hampton, VA 23665-5225 
September 4, 1990

9



Appendix 
Fundamental Equations of 
Thin-Walled-Beam Theory Used in 
Present Study 

The fundamental equations of the linear, Vlasov-
type theory of curved thin-walled beams are given in 
this appendix. A right-handed orthogonal coordinate 
system is used with the x-axis passing through the 
centroids of the cros sections. (See fig. 3.) The beam 
is assumed to be curved in one direction only (in the 
xz-plane). 

Displacement Assumptions 

Based on the assumption that the projection of 
each cross section on a plane normal to the initial 
centroidal axes does not distort during deformation, 
the displacement field in the plane of the cross section 
(yz-plane) is represented by 

I u(x,y,z)) u°
v(x,y,z) = v0 

IW w(x,y,z) °

	

1. z — 1 	
0 

 +I—z	 . I

00 IZI 
—:°°	

(Al) 

where u°, v°, and w° are the axial and transverse 
displacement components at y = z = 0;, q5o , and 

are the rotation components about the coordinate 
axes; 00 is the rate of twist of the beam; and 0 is 
the sectorial coordinate (warping of the cross section 
for a unit rate of twist). The seven generalized 
displacement parameters u°, v°, w°,, , , and 
00 are functions of x only. 

Strain Assumptions 

The following expressions are used for the three 
nonzero components of the strain field in the plane 
of the cross section: 

EX = -	 + zic - 

Yxy = -Yy -	 (A2) 

Yxz = 'Yz + 

where e is the extensional strain of the centerline, 
Ko and #c are the curvature changes in the y- and

z-directions, ,4) is the twist, and	 and	 are
the transverse shear strains. The strain parameters 
E, lc, ,c, y , y , 4 and are functions 
of x only and can be expressed in terms of the 
displacement and rotation components as follows: 

- - +
w0 

KO -
R 

= a° - 

0 = --+ a° + 

4 = a	 +
R 

w0—ao0

where a d/dx and R is the radius of curvature 
of the centerline of the beam. Also, the following 
constraint condition is used to relate 00 and ç: 

ô4.-0°=0	 (A4) 

Constitutive Relations 

The relations betwen the internal forces and the 
strain components are given by 

(N\
 J 

1

I dA I M } = [ 7x 
-y 

M	 JA 
B

E 1 
=EI

A	 •	
•: 11I 'z	 'yz	 I)	 '(A5)

1'YL Symm	 Z I 
I 14p, ° J 

and 

{ Qy}[1 

i i IcrxY}dA 
Mt 	 fA —z y] laxz 

(Yy 
_fx 0 [A	

1	 (A6) 

Ko 

C •

(A3) 
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where

(E 

-
{N 

M B

}t

I koI TO

(Q)t 

IMtJ

IYXY1 
iJ 

t

(A9) 

2E
1My

Uc 1J
NxtA 

MZ1 I	 Iz

( B) I L Symm 

1 lQ
Ty-

Y1 QI 
M 

+	
tJ Lsymm

1 
N 

_i	 .1 JMzl 
i	 .1 )M1 

1]	 BWJ 

1 (Q) 
(AlO) 

1 I
 

MtJ 7J 

K = w2 {A [(uo)2 + (v°) 2 + (w0)2] 

• (4, + j)(0)2 + I(q5°)2 

• I()2 - 2Iyz°cb° + I(O0 ) 2 }	 (All) 

where p is the mass density of the material. In 
equations (A5) to (All), y and z are centroidal 
coordinates. (See fig. 3.) A Fortran program for 
evaluating the principal sectorial properties is listed 
by Coyette (1987).

where A is the cross-sectional area; 4, , I, and Iyz 

are the second moments of the cross section (mo-
ments and product of inertia); J is the Saint-Venant 
torsion constant; 1L is the principal second secto-
rial moment of the cross section (sectorial moment 
of inertia); E and C are the effective Young's and 
shear moduli of the material; N is the axial force; 
M and Mz are the bending moments; B is the 
bimoment; Q, and Q are the transverse shearing 
forces; and Mt is the twisting moment. The defini-
tion of the sectorial properties of the cross section is 
given in Vlasov (1961), Zbirohowski-Kocia (1967), 
and Gjelsvik (1981). 

Variational Functional 

The functional used in the element development 
is given by 

= 1 HR+ I (3 _OO) dx - f'(^) 2 dx (A7) 
Jo	 2E 

where \ is the Lagrange multiplier, E is a penalty 
parameter, 1 is the length of the element, and 7r HR

 is the functional of the Hellinger-Reissner mixed 
variational principle. The expression for 7rHR is 

HRJ0 (V_Uc +K)dX	 (A8)
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Table 1. Measured Thicknesses and Dimensions for I-Section Frame 

0, deg h1 , in. h2 , in. h3 , in. h4 , in. h5 , in. h6 , in. h7 , in. b1 , in. b2 , in. b3, in. b4 , j11 . d1 , in. d2 , in. 

2 0.046 0.042 0.051 0.133 0.139 0.089 0.092 0.712 0.635 1.790 1.625 0.785 0.770 
10 .041 .042 .046 .119 .125 .078 .086 .800 .633 1.795 1.670 .785 .785 
20 .042 .043 .039 .127 .130 .084 .092 .800 .653 1.775 1.670 .800 .800 

30 .041 .043 .041 .127 .126 .085 .091 .773 .680 1.780 1.680 .800 .810 
40 .043 .044 .041 .121 .119 .080 .082 .775 .685 1.780 1.687 .815 .810 

50 .045 .046 .046 .120 .116 .081 .081 .780 .675 1.770 1.685 .820 .810 

60 .044 .045 .049 .124 .127 .085 .088 .795 .685 1.790 1.690 .820 .815 

70 .043 .044 .055 .124 .131 .080 .093 .825 .680 1.775 1.680 .825 .810 

80 .045 .044 .056 .125 .122 .085 .086 .825 .650 1.767 1.687 .815 .810 

90 .051 .049 .050 .128 .129 .088 .091 .850 .645 1.780 1.660 .828 .790 
100 .046 .045 .040 .119 .118 .083 .080 .830 .645 1.800 1.675 .812 .800 
110 .045 .047 .039 .121 .122 .081 .081 .840 .635 1.790 1.690 .810 .790 
120 .044 .047 .040 .118 .120 .083 .079 .800 .670 1.770 1.687 .810 .780 
130 .045 .045 .041 .118 .122 .083 .078 .755 .690 1.765 1.705 .810 .790 
140 .045 .044 .042 .120 .124 .082 .079 .730 .725 1.770 1.675 .805 .795 
150 .044 .043 .041 .120 .120 .085 .079 .730 .708 1.785 1.670 .805 .785 
160 .043 .043 .040 .123 .125 .086 .082 .710 .712 1.810 1.655 .800 .808 
170 .043 .042 .052 .120 .117 .085 .077 .700 .728 1.795 1.655 .807 .785 
178 .042 .044 .048 .136 .141 .093 .096 .692 .700 1.810 1.650 .800 .785

h2 

1"	 b3	 )01I10	 b4 
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Table 2. Measured Thicknesses and Dimensions for J-Section Frame 

9, deg h 1 , in. h2 , in. h3 , in. h4 , in. h5 , in. h6 , in. b, in. b1 , in. b2 , in. b3, in. d, in. 
0 0.094 0.087 0.175 0.174 0.090 0.090 3.518 0.779 1.166 1.260 0.729 

10 .095 .086 .168 .165 .091 .084 3.526 .784 1.191 1.240 .742 
20 .094 .082 .168 .174 .087 .085 3.522 .754 1.299 1.239 .755 
30 .086 .084 .166 .165 .086 .085 3.520 .724 1.289 1.264 .758 
40 .087 .081 .165 .165 .086 .082 3.530 .722 1.266 1.215 .756 
50 .086 .082 .168 .168 .091 .084 3.502 .728 1.272 1.217 .766 
60 .091 .085 .162 .166 .084 .081 3.507 .721 1.250 1.183 .773 
70 .090 .088 .167 .168 .086 .084 3.510 .735 1.258 1.257 .776 
80 .090 .087 .165 .165 .085 .079 3.491 .739 1.236 1.241 .781 
90 .090 .087 .178 .174 .091 .086 3.457 .750 1.281 1.240 .770 

100 .100 .081 .172 .167 .085 .087 3.464 .768 1.308 1.277 .782 
110 .090 .081 .167 .178 .085 .095 3.473 .753 1.273 1.303 .759 
120 .090 .082 .167 .168 .085 .088 3.472 .767 1.244 1.263 .747 
130 .090 .083 .173 .161 .086 .083 3.460 .762 1.256 1.253 .757 
140 .088 .084 .175 .165 .088 .083 3.473 .761 1.254 1.250 .738 
150 .087 .082 .168 .171 .085 .086 3.480 .750 1.253 1.260 .743 
160 .093 .081 .174 .174 .087 .087 3.472 .776 1.238 1.283 .758 
170 .086 .085 .173 .165 .088 .086 3.527 .715 1.231 1.283 .731 
180 .091 .091 .185 .171 .093 .087 3.476 .664 1.220 1.282 .716

h1 

I	 02	 10  

F"
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Table 3. Decomposition of Total Complementary Strain Energy Into Components 

[Uc=U1+U2+U3] 

Energy

Associated stress resultants 
(see fig. 2) 

components Web Flanges and skin Comments 
Ui N1, N12 N1, M1 , Qi In-plane response quantities 

U2 M1, M12 , Qi N12, M12 Out-of-plane response quantities 

U3 N2, M2 , Q2 N2, M2 , Q2 Response quantities neglected in 
one-dimensional model

16



Table 4. Effect of Boundary Conditions on Frequencies Obtained by Two-Dimensional 
Finite-Element Model for I-Section Frame 

Numbers in parentheses refer to ratios of partially clamped 
to totally clamped model frequencies

Frequencies

Frequencies of partially clamped model 
(with the following generalized 

displacements unrestrained), Hz 

of totally 
clamped Experimental 
model, u'1 in uç in flanges frequencies, 

Mode Hz and flanges and ç Hz 
1 9.201 9.001 9.001 6.788 6.632 9.2 

(0.978) (0.978) (0.738) (0.721) 

2 31.86 31.06 31.06 18.11 17.87 29.7 
(0.975) (0.975) (0.568) (0.561) 

3 37.52 37.37 37.37 34.17 33.36 35.9 
(0.996) (0.996) (0.911) (0.889) 

4 73.85 71.82 71.81 38.09 37.69 66.6 
(0.973) (0.972) (0.516) (0.510) 

5 81.34 81.03 81.03 74.30 73.44 78.1 
(0.996) (0.996) (0.913) (0.903) 

6 133.9 130.1 130.1 75.56 74.14 119.0 
(0.972) (0.972) (0.564) (0.554) 

7 149.2 148.6 148.6 129.6 128.1 145.0 
(0.996) (0.996) (0.869) (0.858) 

8 203.3 198.1 198.1 139.8 137.4 193.0 
(0.974) (0.974) (0.688) (0.676) 

9 226.5 225.6 225.6 199.3 196.9 216.0 
(0.996) (0.996) (0.880) (0.870) 223.0 

10 281.9 275.2 275.2 214.2 210.9 260.0 
(0.976) (0.976) (0.760) (0.748) 

11 320.6 319.3 319.3 268.0 264.9 309.0 
(0.996) (0.996) (0.836) (0.826) 

12 349.8 342.3 342.3 305.1 300.7 (Missed) 
(0.979) (0.979) (0.872) (0.860) 

13 419.1 412.6 412.6 343.0 339.0 401.0 
(0.985) (0.985) (0.819) (0.809)
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Table 5. Effect of Boundary Conditions on Frequencies Obtained by Two-Dimensional 
Finite-Element Model for J-Section Frame 

Numbers in parentheses refer to ratios of partially clamped 
to totally clamped model frequencies 

Frequencies

Frequencies of partially clamped model 
(with the following generalized 

displacements unrestrained), Hz 

of totally 
clamped Experimental 
model, u'1 in uç in flanges frequencies, 

Mode Hz ç5	 and flanges and q5 Hz 
1 11.53 11.24 11.24 8.488 8.408 11.6 

(0.975) (0.975) (0.736) (0.729) 

2 36.87 36.64 36.64 22.41 22.37 32.1 
(0.994) (0.994) (0.608) (0.607) 

3 39.81 38.80 38.79 32.77 32.18 37.0 
(0.975) (0.974) (0.823) (0.808) 

4 79.22 78.99 78.99 48.32 47.94 69.0 
(0.997) (0.997) (0.610) (0.605) 

5 91.41 88.81 88.78 72.64 71.68 79.0 
(0.972) (0.971) (0.795) (0.784) 

6 143.9 143.5 143.5 96.58 95.35 126.0 
(0.997) (0.997) (0.671) (0.663) 

7 168.1 163.6 163.5 134.4 132.9 145.0 
(0.973) (0.973) (0.800) (0.790) 

8 214.1 213.4 213.4 167.2 165.0 191.0 
(0.997) (0.997) (0.781) (0.777) 

9 263.0 256.9 256.8 206.5 204.3 221.0 
(0.977) (0.976) (0.785) (0.770) 229.0 

247.0 

10 297.6 296.2 296.2 251.5 248.3 266.0 
(0.995) (0.995) (0.845) (0.834) 

11 368.2 361.2 361.1 298.7 295.5 339.0 
(0.981) (0.981) (0.811) (0.803) 

12 382.8 380.3 380.3 336.7 332.8 347.0 
(0.993) (0.993) (0.880) (0.869) 

13 468.2 462.0 461.9 402.4 398.0 403.0 
(0.987) (0.987) (0.859) (0.850)
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Figure 2. Sign convention for generalized displacements and stress resultants in two-dimensional model. 

Figure 3. Sign convention for generalized displacements and stress resultants in one-dimensional model. 
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L-89-4693 
Figure 4. Thin-walled semicircular graphite-epoxy specimens and equipment.
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Air shaker 

Frequency counter' 

Figure 5. Schematic of test apparatus. 
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(a) Results for experimental and two-dimensional model. 
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(b) Results for experimental and bounding two-dimensional model. 

Figure 6. Comparison of finite-element and experimental frequencies for thin-walled composite frame with 
I cross section.
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(c) Results for two-dimensional and one-dimensional-beam model. 

Figure 6. Concluded. 
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Figure 7. Energy components in different vibration modes of thin-walled composite frame with I cross 
section.
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Figure 9. Sensitivity of vibration frequencies to variations and fiber orientation of flanges and web for 
thin-walled composite frame with I cross section. 

28



.06 

.04 

.02 

io 

-.02 

-.04 

-.06
1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13

Mode 

(c) Bottom flange and skin. 

Figure 9. Concluded.
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Figure 11. Comparison of finite-element and experimental frequencies for thin-walled composite frame 
with J cross section.
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(c) Results for two-dimensional and one-dimensional-beam model. 

Figure 11. Concluded. 
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Figure 12. Energy components in different vibration modes of thin-walled composite frame with J cross 
section.
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Figure 14. Sensitivity of vibration frequencies to variations and fiber orientation of flanges and web for 
thin-walled composite frame with J cross section. 
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