165 research outputs found

    Efektifitas Standar Prosedur Operasional Terhadap Penurunan Waktu Tunggu Operasi Elektif Di Rumah Sakit Umum

    Get PDF
    This research used quasi-experimental design with pre and post test design. Then, for the method used in this research was pre and post intervention which analyze the primer data and secondary data. Furthermore, the research also used descriptive approach to compare the result of pre and post the standard operating procedure was socialized. This research used 52 people as the sample. The research about waiting time of elective surgery and find the main problem bring in the chosen solution by the researcher which is this solution showed the result of the comparison in pre and post socialization the standard operating procedure that increases about 25%. This comparison showed that there is an enhancement of the number of staffs in the operating room who could performance the surgery on time and also showed the reduction number of waiting time in elective surgery

    Antimicrobial, antioxidant, anti-inflammatory activities and phytoconstituents of extracts from the roots of Dissotis thollonii Cogn. (Melastomataceae)

    Get PDF
    Abstract Background Dissotis thollonii Cogn. belonging to the Malastomataceae family is used in the West Region of Cameroon for the treatment of inflammation, kidney diseases, pregnancy control and sinusitis. Despite the traditional use of this plant, no scientific report or information was found in the literature regarding neither its biological activity nor its chemical constituents. Aim of the study The present work was designed to determine the antimicrobial, antioxidant and anti-inflammatory activities of different extracts of the roots of D. thollonii Cogn. as well as the isolation and identification of the chemical constituents of this plant. Materials and methods The tests for antimicrobial, antioxidant and anti-inflammatory activities were performed over the MeOH, EtOAc, n-BuOH and aqueous extracts. Compounds were isolated from EtOAc and n-BuOH extracts of the roots of D. thollonii Cogn. through column chromatography and their structures were determined by means of NMR and MS analysis, and published data. Results According to the antimicrobial and antioxidant assays, the EtOAc and n-BuOH extracts were submitted to further separation and purification. This led to the isolation of twelve compounds identified as 3,3′-di- O -methylellagic acid 4′- O-β -D-xylopyranoside 1 , 3- O -methylellagic acid 4′- O-β -D-arabinopyranoside 2 , casuarinin 3 , betulinic acid 4 , β -sitosterol-3- O -D-glucopyranosyl-6′-mirystate 5 , cellobiosylsterol 6 , β -sitosterol 7 , β -sitosterol-3- O-β -D-glucopyranoside 8, arjunolic acid 9 , 3,3′-di- O -methylellagic acid 10 , ellagic acid 11 , and 3,3′-di- O -methylellagic acid 4′- O - β -D-glucopyranoside 12 . The EtOAc extract was the only antimicrobial active sample [diameter of the zone of inhibition (DZI) of 10 mm against Staphyloccocus aureus ] among all the tested extracts. The analysis of fractions of this extract revealed the presence of bioactive compounds with a described antimicrobial activity such as β -sitosterol, β -sitosterol-3- O-β -D-glucopyranoside and arjunolic acid. By using Trolox as the standard drug, all extracts showed antioxidant activity against DPPH in the following order of scavenging ability: Trolox > nBuOH > EtOAc > MeOH > WE (water extract). The ABTS •+ scavenging ability was similar to that found for the DPPH assay, being Trolox > n-BuOH > MeOH > EtOAc > WE. Along with the DPPH and ABTS assays, the FRAP assay showed the scale n-BuOH > MeOH > WE > EtOAc. The phytochemical study of the EtOAc and n-BuOH extracts revealed the presence of important known antioxidant compounds such as ellagic acid derivatives, arjunolic acid, betulinic acid and β -sitosterol. The anti-inflammatory properties of D. thollonii extracts were investigated using RAW 264.7 murine macrophage cells. The MeOH extract reduced the stimulated NO production in a concentration-dependent manner. 86% reduction was observed at the highest tested concentration of 100 μg/ml (IC 50 = 5.9 μg/ml). The n-BuOH extract showed higher dose dependent reduction of NO formation (IC 50 = 6.5 μg/ml) than the EtOAc extract (IC 50 = 18.1 μg/ml), whereas the water extract had no significant influence on the NO production. All the extracts did not have any influence on the macrophage viability. The phytochemical investigation of the EtOAc and n-BuOH extracts revealed that the main compounds identified do have potent anti-inflammatory properties. Conclusion The biological and phytochemical characterization of the root extracts of D. thollonii validates the use of this plant for the treatment of inflammation and sinusitis, thus providing evidence that this plant extracts, as well as some of the isolated compounds, might be potential sources of antioxidant and anti-inflammatory drugs

    Mammalian Mitochondrial Methionyl-tRNA Transformylase from Bovine Liver: PURIFICATION, CHARACTERIZATION, AND GENE STRUCTURE

    Get PDF
    The mammalian mitochondrial methionyl-tRNA transformylase (MTFmt) was partially purified 2,200-fold from bovine liver mitochondria using column chromatography. The polypeptide responsible for MTFmt activity was excised from a sodium dodecyl sulfate-polyacrylamide gel and the amino acid sequences of several peptides were determined. The cDNA encoding bovine MTFmt was obtained and its nucleotide sequence was determined. The deduced amino acid sequence of the mature form of MTFmt consists of 357 amino acid residues. This sequence is about 30% identical to the corresponding Escherichia coli and yeast mitochondrial MTFs. Kinetic parameters governing the formylation of various tRNAs were obtained. Bovine MTFmt formylates its homologous mitochondrial methionyl-tRNA and the E. coli initiator methionyl-tRNA (Met-tRNAfMet) with essentially equal efficiency. The E. coli elongator methionyl-tRNA (Met-tRNAmMet) was also formylated although with somewhat less favorable kinetics. These results suggest that the substrate specificity of MTFmt is not as rigid as that of the E. coli MTF which clearly discriminates between the bacterial initiator and elongator Met-tRNAs. These observations are discussed in terms of the presence of a single tRNAMet gene in mammalian mitochondria

    Analysis of the functional consequences of lethal mutations in mitochondrial translational elongation factors

    Get PDF
    Mammalian mitochondria synthesize a set of thirteen proteins that are essential for energy generation via oxidative phosphorylation. The genes for all of the factors required for synthesis of the mitochondrially-encoded proteins are located in the nuclear genome. A number of disease-causing mutations have been identified in these genes. In this manuscript, we have elucidated the mechanisms of translational failure for two disease states characterized by lethal mutations in mitochondrial elongation factor Ts (EF-Tsmt) and elongation factor Tu (EF-Tumt)

    Association of atherosclerotic Cardiovascular Disease, Hypertension, Diabetes, and Hyperlipidemia With Gulf War Illness among Gulf War Veterans

    Get PDF
    BACKGROUND: Approximately 30% of the 700 000 Gulf War veterans report a chronic symptom-based illness of varying severity referred to as Gulf War illness (GWI). toxic deployment-related exposures have been implicated in the cause of GWI, some of which contribute to metabolic dysregulation and lipid abnormalities. As this cohort ages, the relationship between GWI and atherosclerotic cardiovascular disease (ASCVD) is a growing concern. We evaluated associations between GWI and ASCVD, diabetes, hyperlipidemia, and hypertension in veterans of the Gulf War (1990-1991). METHODS AND RESULTS: Analysis of survey data collected in 2014 to 2016 from a national sample of deployed Gulf War veterans (n=942) and Veterans Health Administration electronic health record data (n=669). Multivariable logistic regression models tested for associations of GWI with self-reported ASCVD, diabetes, hyperlipidemia, and hypertension, controlling for confounding factors. Separate models tested for GWI associations with ASCVD and risk factors documented in the electronic health record. GWI was associated with self-reported hypertension (adjusted odds ratio [aOR], 1.67 [95% CI, 1.18-2.36]), hyperlipidemia (aOR, 1.46 [95% CI, 1.03-2.05]), and ASCVD (aOR, 2.65 [95% CI, 1.56-4.51]). In the subset of veterans with electronic health record data, GWI was associated with documented diabetes (aOR, 2.34 [95% CI, 1.43-3.82]) and hypertension (aOR, 2.84 [95% CI, 1.92-4.20]). Hyperlipidemia and hypertension served as partial mediators of the association between GWI and self-reported ASCVD. CONCLUSIONS: Gulf War veterans with GWI had higher odds of hyperlipidemia, hypertension, diabetes, and ASCVD compared with Gulf War veterans without GWI. Further examination of the mechanisms underlying this association, including a possible shared exposure-related mechanism, is necessary

    The Echinococcus canadensis (G7) genome: A key knowledge of parasitic platyhelminth human diseases

    Get PDF
    Background: The parasite Echinococcus canadensis (G7) (phylum Platyhelminthes, class Cestoda) is one of the causative agents of echinococcosis. Echinococcosis is a worldwide chronic zoonosis affecting humans as well as domestic and wild mammals, which has been reported as a prioritized neglected disease by the World Health Organisation. No genomic data, comparative genomic analyses or efficient therapeutic and diagnostic tools are available for this severe disease. The information presented in this study will help to understand the peculiar biological characters and to design species-specific control tools. Results: We sequenced, assembled and annotated the 115-Mb genome of E. canadensis (G7). Comparative genomic analyses using whole genome data of three Echinococcus species not only confirmed the status of E. canadensis (G7) as a separate species but also demonstrated a high nucleotide sequences divergence in relation to E. granulosus (G1). The E. canadensis (G7) genome contains 11,449 genes with a core set of 881 orthologs shared among five cestode species. Comparative genomics revealed that there are more single nucleotide polymorphisms (SNPs) between E. canadensis (G7) and E. granulosus (G1) than between E. canadensis (G7) and E. multilocularis. This result was unexpected since E. canadensis (G7) and E. granulosus (G1) were considered to belong to the species complex E. granulosus sensu lato. We described SNPs in known drug targets and metabolism genes in the E. canadensis (G7) genome. Regarding gene regulation, we analysed three particular features: CpG island distribution along the three Echinococcus genomes, DNA methylation system and small RNA pathway. The results suggest the occurrence of yet unknown gene regulation mechanisms in Echinococcus. Conclusions: This is the first work that addresses Echinococcus comparative genomics. The resources presented here will promote the study of mechanisms of parasite development as well as new tools for drug discovery. The availability of a high-quality genome assembly is critical for fully exploring the biology of a pathogenic organism. The E. canadensis (G7) genome presented in this study provides a unique opportunity to address the genetic diversity among the genus Echinococcus and its particular developmental features. At present, there is no unequivocal taxonomic classification of Echinococcus species; however, the genome-wide SNPs analysis performed here revealed the phylogenetic distance among these three Echinococcus species. Additional cestode genomes need to be sequenced to be able to resolve their phylogeny.Fil: Maldonado, Lucas Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Assis, Juliana. Fundación Oswaldo Cruz; BrasilFil: Gomes Araújo, Flávio M.. Fundación Oswaldo Cruz; BrasilFil: Salim, Anna C. M.. Fundación Oswaldo Cruz; BrasilFil: Macchiaroli, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Cucher, Marcela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Camicia, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Fox, Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Rosenzvit, Mara Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Oliveira, Guilherme. Instituto Tecnológico Vale; Brasil. Fundación Oswaldo Cruz; BrasilFil: Kamenetzky, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentin

    Harnessing Schistosoma -associated metabolite changes in the human host to identify biomarkers of infection and morbidity: where are we and what should we do next?

    Get PDF
    Schistosomiasis is the second most widespread parasitic disease affecting humans. A key component of today’s infection control measures is the diagnosis and monitoring of infection, informing individual- and community-level treatment. However, newly acquired infections and/or low parasite burden are still difficult to diagnose reliably. Furthermore, even though the pathological consequence of schistosome egg sequestration in host tissues is well described, the evidence linking egg burden to morbidity is increasingly challenged, making it inadequate for pathology monitoring. In the last decades, omics-based instruments and methods have been developed, adjusted, and applied in parasitic research. In particular, the profiling of the most reliable determinants of phenotypes, metabolites by metabolomics, emerged as a powerful boost in the understanding of basic interactions within the human host during infection. As such, the fine detection of host metabolites produced upon exposure to parasites such as Schistosoma spp. and the ensuing progression of the disease are believed to enable the identification of Schistosoma spp. potential biomarkers of infection and associated pathology. However, attempts to provide such a comprehensive understanding of the alterations of the human metabolome during schistosomiasis are rare, limited in their design when performed, and mostly inconclusive. In this review, we aimed to briefly summarize the most robust advances in knowledge on the changes in host metabolic profile during Schistosoma infections and provide recommendations for approaches to optimize the identification of metabolomic signatures of human schistosomiasis

    Characterization and tRNA Recognition of Mammalian Mitochondrial Seryl-tRNA Synthetase

    Get PDF
    Animal mitochondrial protein synthesis systems contain two serine tRNAs (tRNAs(Ser)) corresponding to the codons AGY and UCN, each possessing an unusual secondary structure; the former lacks the entire D arm, and the latter has a slightly different cloverleaf structure. To elucidate whether these two tRNAs(Ser) can be recognized by the single animal mitochondrial seryl-tRNA synthetase (mt SerRS), we purified mt SerRS from bovine liver 2400-fold and showed that it can aminoacylate both of them. Specific interaction between mt SerRS and either of the tRNAs(Ser) was also observed in a gel retardation assay. cDNA cloning of bovine mt SerRS revealed that the deduced amino acid sequence of the enzyme contains 518 amino acid residues. The cDNAs of human and mouse mt SerRS were obtained by reverse transcription-polymerase chain reaction and expressed sequence tag data base searches. Elaborate inspection of primary sequences of mammalian mt SerRSs revealed diversity in the N-terminal domain responsible for tRNA recognition, indicating that the recognition mechanism of mammalian mt SerRS differs considerably from that of its prokaryotic counterpart. In addition, the human mt SerRS gene was found to be located on chromosome 19q13.1, to which the autosomal deafness locus DFNA4 is mapped

    Polymorphisms in the Mitochondrial Ribosome Recycling Factor EF-G2mt/MEF2 Compromise Cell Respiratory Function and Increase Atorvastatin Toxicity

    Get PDF
    Mitochondrial translation, essential for synthesis of the electron transport chain complexes in the mitochondria, is governed by nuclear encoded genes. Polymorphisms within these genes are increasingly being implicated in disease and may also trigger adverse drug reactions. Statins, a class of HMG-CoA reductase inhibitors used to treat hypercholesterolemia, are among the most widely prescribed drugs in the world. However, a significant proportion of users suffer side effects of varying severity that commonly affect skeletal muscle. The mitochondria are one of the molecular targets of statins, and these drugs have been known to uncover otherwise silent mitochondrial mutations. Based on yeast genetic studies, we identify the mitochondrial translation factor MEF2 as a mediator of atorvastatin toxicity. The human ortholog of MEF2 is the Elongation Factor Gene (EF-G) 2, which has previously been shown to play a specific role in mitochondrial ribosome recycling. Using small interfering RNA (siRNA) silencing of expression in human cell lines, we demonstrate that the EF-G2mt gene is required for cell growth on galactose medium, signifying an essential role for this gene in aerobic respiration. Furthermore, EF-G2mt silenced cell lines have increased susceptibility to cell death in the presence of atorvastatin. Using yeast as a model, conserved amino acid variants, which arise from non-synonymous single nucleotide polymorphisms (SNPs) in the EF-G2mt gene, were generated in the yeast MEF2 gene. Although these mutations do not produce an obvious growth phenotype, three mutations reveal an atorvastatin-sensitive phenotype and further analysis uncovers a decreased respiratory capacity. These findings constitute the first reported phenotype associated with SNPs in the EF-G2mt gene and implicate the human EF-G2mt gene as a pharmacogenetic candidate gene for statin toxicity in humans
    • …
    corecore