174 research outputs found

    Primed T Cell Responses to Chemokines Are Regulated by the Immunoglobulin-Like Molecule CD31

    Get PDF
    CD31, an immunoglobulin-like molecule expressed by leukocytes and endothelial cells, is thought to contribute to the physiological regulation T cell homeostasis due to the presence of two immunotyrosine-based inhibitory motifs in its cytoplasmic tail. Indeed, loss of CD31 expression leads to uncontrolled T cell-mediated inflammation in a variety of experimental models of disease and certain CD31 polymorphisms correlate with increased disease severity in human graft-versus-host disease and atherosclerosis. The molecular mechanisms underlying CD31-mediated regulation of T cell responses have not yet been clarified. We here show that CD31-mediated signals attenuate T cell chemokinesis both in vitro and in vivo. This effect selectively affects activated/memory T lymphocytes, in which CD31 is clustered on the cell membrane where it segregates to the leading edge. We provide evidence that this molecular segregation, which does not occur in naïve T lymphocytes, might lead to cis-CD31 engagement on the same membrane and subsequent interference with the chemokine-induced PI3K/Akt signalling pathway. We propose that CD31-mediated modulation of memory T cell chemokinesis is a key mechanism by which this molecule contributes to the homeostatic regulation of effector T cell immunity

    A novel Rac-dependent checkpoint in B cell development controls entry into the splenic white pulp and cell survival

    Get PDF
    Rac1 and Rac2 GTPases transduce signals from multiple receptors leading to cell migration, adhesion, proliferation, and survival. In the absence of Rac1 and Rac2, B cell development is arrested at an IgD− transitional B cell stage that we term transitional type 0 (T0). We show that T0 cells cannot enter the white pulp of the spleen until they mature into the T1 and T2 stages, and that this entry into the white pulp requires integrin and chemokine receptor signaling and is required for cell survival. In the absence of Rac1 and Rac2, transitional B cells are unable to migrate in response to chemokines and cannot enter the splenic white pulp. We propose that loss of Rac1 and Rac2 causes arrest at the T0 stage at least in part because transitional B cells need to migrate into the white pulp to receive survival signals. Finally, we show that in the absence of Syk, a kinase that transduces B cell antigen receptor signals required for positive selection, development is arrested at the same T0 stage, with transitional B cells excluded from the white pulp. Thus, these studies identify a novel developmental checkpoint that coincides with B cell positive selection

    Prevalence and Subtypes of Mild Cognitive Impairment in Parkinson's Disease.

    Get PDF
    The current study examined the prevalence and subtypes of Mild Cognitive Impairment (MCI) in an Australian sample of people with Parkinson's Disease (PD). Seventy participants with PD completed neuropsychological assessments of their cognitive performance, using MDS Task Force Level II diagnostic criteria for PD-MCI. A cut-off score of less than one standard deviation (SD) below normative data determined impaired performance on a neuropsychological test. Of 70 participants, 45 (64%) met Level II diagnostic criteria for PD-MCI. Among those with PD-MCI, 42 (93%) were identified as having multiple domain impairment (28 as amnestic multiple domain and 14 as nonamnestic multiple domain). Single domain impairment was less frequent (2 amnestic/1 nonamnestic). Significant differences were found between the PD-MCI and Normal Cognition groups, across all cognitive domains. Multiple domain cognitive impairment was more frequent than single domain impairment in an Australian sample of people with PD. However, PD-MCI is heterogeneous and current prevalence and subtyping statistics may be an artifact of variable application methods of the criteria (e.g., cut off scores and number of tests). Future longitudinal studies refining the criteria will assist with subtyping the progression of PD-MCI, while identifying individuals who may benefit from pharmacological and nonpharmacological interventions

    Percutaneous Coronary Intervention Versus Medical Therapy for Chronic Total Occlusion of Coronary Arteries:A Systematic Review and Meta-Analysis

    Get PDF
    PURPOSE OF REVIEW: Chronic total occlusion (CTO) of the coronary arteries is a significant clinical problem and has traditionally been treated by medical therapy or coronary artery bypass grafting. Recent studies have examined percutaneous coronary intervention (PCI) as an alternative option. RECENT FINDINGS: This systematic review and meta-analysis compared medical therapy to PCI for treating CTOs. PubMed and Embase were searched from their inception to March 2019 for studies that compared medical therapy and PCI for clinical outcomes in patients with CTOs. Quality of the included studies was assessed by Newcastle-Ottawa scale. The results were pooled by DerSimonian and Laird random- or fixed-effect models as appropriate. Heterogeneity between studies and publication bias was evaluated by I2 index and Egger's regression, respectively. Of the 703 entries screened, 17 studies were included in the final analysis. This comprised 11,493 participants. Compared to PCI, medical therapy including randomized and observational studies was significantly associated with higher risk of all-cause mortality (risk ratio (RR) 1.99, 95% CI 1.38-2.86), cardiac mortality (RR 2.36 (1.97-2.84)), and major adverse cardiac event (RR 1.25 (1.03-1.51)). However, no difference in the rate of myocardial infarction and repeat revascularization procedures was observed between the two groups. Univariate meta-regression demonstrated multiple covariates as independent moderating factors for myocardial infarction and repeat revascularization but not cardiac death and all-cause mortality. However, when only randomized studies were included, there was no difference in overall mortality or cardiac death. In CTO, when considering randomized and observational studies, medical therapy might be associated with a higher risk of mortality and myocardial infarction compared to PCI treatment

    Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis

    Get PDF
    Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass, yet unlike white or brown adipose tissues (WAT or BAT) its metabolic functions remain unclear. Herein, we address this critical gap in knowledge. Our transcriptomic analyses revealed that BMAT is distinct from WAT and BAT, with altered glucose metabolism and decreased insulin responsiveness. We therefore tested these functions in mice and humans using positron emission tomography-computed tomography (PET/CT) with 18F-fluorodeoxyglucose. This revealed that BMAT resists insulin- and cold-stimulated glucose uptake, while further in vivo studies showed that, compared to WAT, BMAT resists insulin-stimulated Akt phosphorylation. Thus, BMAT is functionally distinct from WAT and BAT. However, in humans basal glucose uptake in BMAT is greater than in axial bones or subcutaneous WAT and can be greater than that in skeletal muscle, underscoring the potential of BMAT to influence systemic glucose homeostasis. These PET/CT studies characterise BMAT function in vivo, establish new methods for BMAT analysis, and identify BMAT as a distinct, major adipose tissue subtype

    Tm1: A Mutator/Foldback Transposable Element Family in Root-Knot Nematodes

    Get PDF
    Three closely related parthenogenetic species of root-knot nematodes, collectively termed the Meloidogyne incognita-group, are economically significant pathogens of diverse crop species. Remarkably, these asexual root-knot nematodes are capable of acquiring heritable changes in virulence even though they lack sexual reproduction and meiotic recombination. Characterization of a near isogenic pair of M. javanica strains differing in response to tomato with the nematode resistance gene Mi-1 showed that the virulent strain carried a deletion spanning a gene called Cg-1. Herein, we present evidence that the Cg-1 gene lies within a member of a novel transposable element family (Tm1; Transposon in Meloidogyne-1). This element family is defined by composite terminal inverted repeats of variable lengths similar to those of Foldback (FB) transposable elements and by 9 bp target site duplications. In M. incognita, Tm1 elements can be classified into three general groups: 1) histone-hairpin motif elements; 2) MITE-like elements; 3) elements encoding a putative transposase. The predicted transposase shows highest similarity to gene products encoded by aphids and mosquitoes and resembles those of the Phantom subclass of the Mutator transposon superfamily. Interestingly, the meiotic, sexually-reproducing root-knot nematode species M. hapla has Tm1 elements with similar inverted repeat termini, but lacks elements with histone hairpin motifs and contains no elements encoding an intact transposase. These Tm1 elements may have impacts on root-knot nematode genomes and contribute to genetic diversity of the asexual species

    Mechanisms of T cell organotropism

    Get PDF
    F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation

    Mesenchymal stem cells promote macrophage polarization toward M2b-like cells

    Get PDF
    Mesenchymal stem or stromal cells (MSCs) act on different components of the immune response including macrophages (MPhis). Therefore this study has been committed to explore how MSCs may modify the effect of MPhi polarization upon an inductive environment using mouse bone marrow (BM)-derived "naive", unpolarized MPhis. Phagocytosis of various MPhi subtypes was different since M1 and M2b showed poorer, while M2a higher rate of phagocytosis. MSCs significantly promoted yeast ingestion by M1 and M2b and diminished it by M2a cells. Under polarizing conditions, MSCs profoundly affected the TNFalpha production of MPhi subtypes since M1 and M2b MPhis produced less and M2a produced higher amount of TNFalpha while the amount of IL-10 was not affected. The most striking effect of MSCs was registered on M2b cells since the inflammatory TNFalpha dominance remarkably shifted to the immunosuppressive IL-10. Prepolarized M1 cells readily converted to M2a and M2b states when polarizing conditions changed from M1 to M2a or M2b induction, respectively. Repolarizing from M1 to M2a resulted in the decline of IL-10 and TNFalpha and defined elevation of Ym1 similar to levels characteristic to M2a primarily polarized from naive BM-MPhis. Similarly, polarization of M1 to M2b MPhis was successful showing increase in IL-10 and reduction in TNFalpha levels characteristic to M2b cells. However, when co-culturing with MSCs, M1-M2a or M1-M2b transition was not affected. Crosstalk between MPhis and MSCs depended on PGE-2 since COX-2 inhibition reduced the effect of MSCs to establish an IL-10-dominant cytokine production by MPhis
    corecore