16 research outputs found
Region of hadron-quark mixed phase in hybrid stars
Hadron--quark mixed phase is expected in a wide region of the inner structure
of hybrid stars. However, we show that the hadron--quark mixed phase should be
restricted to a narrower region to because of the charge screening effect. The
narrow region of the mixed phase seems to explain physical phenomena of neutron
stars such as the strong magnetic field and glitch phenomena, and it would give
a new cooling curve for the neutron star.Comment: to be published in Physical Review
Solar fusion cross sections. II. The pp chain and CNO cycles
We summarize and critically evaluate the available data on nuclear fusion
cross sections important to energy generation in the Sun and other
hydrogen-burning stars and to solar neutrino production. Recommended values and
uncertainties are provided for key cross sections, and a recommended spectrum
is given for 8B solar neutrinos. We also discuss opportunities for further
increasing the precision of key rates, including new facilities, new
experimental techniques, and improvements in theory. This review, which
summarizes the conclusions of a workshop held at the Institute for Nuclear
Theory, Seattle, in January 2009, is intended as a 10-year update and
supplement to Reviews of Modern Physics 70 (1998) 1265.Comment: 54 pages, 20 figures, version to be published in Reviews of Modern
Physics; various typos corrected and several updates mad
Ab initio alpha-alpha scattering
Processes involving alpha particles and alpha-like nuclei comprise a major
part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear
supernovae. In an effort towards understanding alpha processes from first
principles, we describe in this letter the first ab initio calculation of
alpha-alpha scattering. We use lattice effective field theory to describe the
low-energy interactions of nucleons and apply a technique called the adiabatic
projection method to reduce the eight-body system to an effective two-cluster
system. We find good agreement between lattice results and experimental phase
shifts for S-wave and D-wave scattering. The computational scaling with
particle number suggests that alpha processes involving heavier nuclei are also
within reach in the near future.Comment: 6 pages, 6 figure
Recommended from our members
Solar fusion cross sections. II. the pp chain and CNO cycles
The available data on nuclear fusion cross sections important to energy generation in the Sun and other hydrogen-burning stars and to solar neutrino production are summarized and critically evaluated. Recommended values and uncertainties are provided for key cross sections, and a recommended spectrum is given for B8 solar neutrinos. Opportunities for further increasing the precision of key rates are also discussed, including new facilities, new experimental techniques, and improvements in theory. This review, which summarizes the conclusions of a workshop held at the Institute for Nuclear Theory, Seattle, in January 2009, is intended as a 10-year update and supplement to 1998, Rev. Mod. Phys. 70, 1265RMPHAT0034-686110.1103/RevModPhys.70.1265. © 2011 American Physical Society