172 research outputs found

    Ibrutinib Unmasks Critical Role of Bruton Tyrosine Kinase in Primary CNS Lymphoma.

    Get PDF
    Bruton tyrosine kinase (BTK) links the B-cell antigen receptor (BCR) and Toll-like receptors with NF-κB. The role of BTK in primary central nervous system (CNS) lymphoma (PCNSL) is unknown. We performed a phase I clinical trial with ibrutinib, the first-in-class BTK inhibitor, for patients with relapsed or refractory CNS lymphoma. Clinical responses to ibrutinib occurred in 10 of 13 (77%) patients with PCNSL, including five complete responses. The only PCNSL with complete ibrutinib resistance harbored a mutation within the coiled-coil domain of CARD11, a known ibrutinib resistance mechanism. Incomplete tumor responses were associated with mutations in the B-cell antigen receptor-associated protein CD79B

    Evaluation and Validation of a Real-Time PCR Assay for Detection and Quantitation of Human Adenovirus 14 from Clinical Samples

    Get PDF
    In 2007, the Centers for Disease Control and Prevention (CDC) reported that Human adenovirus type 14 (HAdV-14) infected 106 military personnel and was responsible for the death of one U.S. soldier at Lackland Air Force Base in Texas. Identification of the responsible adenovirus, which had not previously been seen in North America and for which rapid diagnostic tools were unavailable, required retrospective analysis at reference laboratories. Initial quarantine measures were also reliant on relatively slow traditional PCR analysis at other locations. To address this problem, we developed a real-time PCR assay that detects a 225 base pair sequence in the HAdV-14a hexon gene. Fifty-one oropharyngeal swab specimens from the Naval Health Research Center, San Diego, CA and Advanced Diagnostic Laboratory, Lackland AFB, TX were used to validate the new assay. The described assay detected eight of eight and 19 of 19 confirmed HAdV-14a clinical isolates in two separate cohorts from respiratory disease outbreaks. The real-time PCR assay had a wide dynamic range, detecting from 102 to 107 copies of genomic DNA per reaction. The assay did not cross-react with other adenoviruses, influenza, respiratory syncytial virus, or common respiratory tract bacteria. The described assay is easy to use, sensitive and specific for HAdV-14a in clinical throat swab specimens, and very rapid since turnaround time is less than four hours to obtain an answer

    Integrating home-based exercise training with a hospital at home service for patients hospitalised with acute exacerbations of COPD: developing the model using accelerated experience-based co-design. International Journal of COPD

    Get PDF
    Background : Hospital at home (HaH) schemes allow early discharge of patients hospitalised with an acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Traditional outpatient pulmonary rehabilitation (PR) following an AECOPD has an established evidence-base, but there are issues with low referral, uptake and completion. One commonly cited barrier to PR post-hospitalisation relates to poor accessibility. To address this, the aim of this project was to enrol service users (patients with COPD and informal carers) and healthcare professionals to co-design a model of care that integrates home-based exercise training within a HaH scheme for patients discharged from hospital following AECOPD. Methods : This accelerated experience-based co-design project included three audio-recorded stakeholder feedback events, using key “touchpoints” from previous qualitative interviews and a recent systematic review. Audio-recordings were inductively analysed using directed content analysis. An integrated model of care was then developed and finalised through two co-design groups, with the decision-making process facilitated by the tables of changes approach. Results : Seven patients with COPD, two informal carers and nine healthcare professionals (from an existing outpatient PR service and HaH scheme) participated in the stakeholder feedback events. Four key themes were identified: 1) individualisation, 2) progression and transition, 3) continuity between services, and 4) communication between stakeholders. Two patients with COPD, one informal carer and three healthcare professionals participated in the first joint co-design group, with five healthcare professionals attending a second co-design group. These achieved a consensus on the integrated model of care. The agreed model comprised face-to-face supervised, individually tailored home-based exercise training one to three times a week, delivered during HaH scheme visits where possible by a healthcare professional competent to provide both home-based exercise training and usual HaH care. Conclusion : An integrated model of care has been co-designed by patients with COPD, informal carers and healthcare professionals to address low uptake and completion of PR following AECOPD. The co-designed model of care has now been integrated within a well-established HaH scheme

    Recombinant Iss as a Potential Vaccine for Avian Colibacillosis

    Get PDF
    Avian pathogenic Escherichia coli (APEC) cause colibacillosis, a disease which is responsible for significant losses in poultry. Control of colibacillosis is problematic due to the restricted availability of relevant antimicrobial agents and to the frequent failure of vaccines to protect against the diverse range of APEC serogroups causing disease in birds. Previously, we reported that the increased serum survival gene (iss) is strongly associated with APEC strains, but not with fecal commensal E. coli in birds, making iss and the outer membrane protein it encodes (Iss) candidate targets for colibacillosis control procedures. Preliminary studies in birds showed that their immunization with Iss fusion proteins protected against challenge with two of the more-commonly occurring APEC serogroups (O2 and O78). Here, the potential of an Iss-based vaccine was further examined by assessing its effectiveness against an additional and widely occurring APEC serogroup (O1) and its ability to evoke both a serum and mucosal antibody response in immunized birds. In addition, tissues of selected birds were subjected to histopathologic examination in an effort to better characterize the protective response afforded by immunization with this vaccine. Iss fusion proteins were administered intramuscularly to four groups of 2-wk-old broiler chickens. At 2 wk postimmunization, chickens were challenged with APEC strains of the O1, O2, or O78 serogroups. One week after challenge, chickens were euthanatized, necropsied, any lesions consistent with colibacillosis were scored, and tissues from these birds were taken aseptically. Sera were collected pre-immunization, postimmunization, and post-challenge, and antibody titers to Iss were determined by enzyme-linked immunosorbent assay (ELISA). Also, air sac washings were collected to determine the mucosal antibody response to Iss by ELISA. During the observation period following challenge, 3/12 nonimmunized chickens, 1/12 chickens immunized with 10 µg of GST-Iss, and 1/12 chickens immunized with 50 µg of GST-Iss died when challenged with the O78 strain. No other deaths occurred. Immunized chickens produced a serum and mucosal antibody response to Iss and had significantly lower lesion scores than nonimmunized chickens following challenge, regardless of the challenge strain. This study expands on our previous report of the value of Iss as an immunoprotective antigen and demonstrates that immunization with Iss can provide significant protection of chickens against challenge with three different E. coli strains.This article is from Avian Diseases 56, no. 1 (2012): 192–199, doi:10.1637/9861-072111-Reg.1.</p

    Diversity and Population Overlap between Avian and Human Escherichia coli Belonging to Sequence Type 95

    Get PDF
    APEC causes a range of infections in poultry, collectively called colibacillosis, and is the leading cause of mortality and is associated with major economic significance in the poultry industry. A growing number of studies have suggested APEC as an external reservoir of human ExPEC, including UPEC, which is a reservoir. ExPEC belonging to ST95 is considered one of the most important pathogens in both poultry and humans. This study is the first in-depth whole-genome-based comparison of ST95 E. coli which investigates both the core genomes as well as the accessory genomes of avian and human ExPEC. We demonstrated that multiple lineages of ExPEC belonging to ST95 exist, of which the majority may cause infection in humans, while only part of the ST95 cluster seem to be avian pathogenic. These findings further support the idea that urinary tract infections may be a zoonotic infection.Avian-pathogenic Escherichia coli (APEC) is a subgroup of extraintestinal pathogenic E. coli (ExPEC) presumed to be zoonotic and to represent an external reservoir for extraintestinal infections in humans, including uropathogenic E. coli (UPEC) causing urinary tract infections. Comparative genomics has previously been applied to investigate whether APEC and human ExPEC are distinct entities. Even so, whole-genome-based studies are limited, and large-scale comparisons focused on single sequence types (STs) are not available yet. In this study, comparative genomic analysis was performed on 323 APEC and human ExPEC genomes belonging to sequence type 95 (ST95) to investigate whether APEC and human ExPEC are distinct entities. Our study showed that APEC of ST95 did not constitute a unique ExPEC branch and was genetically diverse. A large genetic overlap between APEC and certain human ExPEC was observed, with APEC located on multiple branches together with closely related human ExPEC, including nearly identical APEC and human ExPEC. These results illustrate that certain ExPEC clones may indeed have the potential to cause infection in both poultry and humans. Previously described ExPEC-associated genes were found to be encoded on ColV plasmids. These virulence-associated plasmids seem to be crucial for ExPEC strains to cause avian colibacillosis and are strongly associated with strains of the mixed APEC/human ExPEC clusters. The phylogenetic analysis revealed two distinct branches consisting of exclusively closely related human ExPEC which did not carry the virulence-associated plasmids, emphasizing a lower avian virulence potential of human ExPEC in relation to an avian host

    Computational and Serologic Analysis of Novel and Known Viruses in Species Human Adenovirus D in Which Serology and Genomics Do Not Correlate

    Get PDF
    In November of 2007 a human adenovirus (HAdV) was isolated from a bronchoalveolar lavage (BAL) sample recovered from a biopsy of an AIDS patient who presented with fever, cough, tachycardia, and expiratory wheezes. To better understand the isolated virus, the genome was sequenced and analyzed using bioinformatic and phylogenomic analysis. The results suggest that this novel virus, which is provisionally named HAdV-D59, may have been created from multiple recombination events. Specifically, the penton, hexon, and fiber genes have high nucleotide identity to HAdV-D19C, HAdV-D25, and HAdV-D56, respectively. Serological results demonstrated that HAdV-D59 has a neutralization profile that is similar yet not identical to that of HAdV-D25. Furthermore, we observed a two-fold difference between the ability of HAdV-D15 and HAdV-D25 to be neutralized by reciprocal antiserum indicating that the two hexon proteins may be more similar in epitopic conformation than previously assumed. In contrast, hexon loops 1 and 2 of HAdV-D15 and HAdV-D25 share 79.13 and 92.56 percent nucleotide identity, respectively. These data suggest that serology and genomics do not always correlate

    Review of Pesticide Urinary Biomarker Measurements from Selected US EPA Children’s Observational Exposure Studies

    Get PDF
    Children are exposed to a wide variety of pesticides originating from both outdoor and indoor sources. Several studies were conducted or funded by the EPA over the past decade to investigate children’s exposure to organophosphate and pyrethroid pesticides and the factors that impact their exposures. Urinary metabolite concentration measurements from these studies are consolidated here to identify trends, spatial and temporal patterns, and areas where further research is required. Namely, concentrations of the metabolites of chlorpyrifos (3,5,6-trichloro-2-pyridinol or TCPy), diazinon (2-isopropyl-6-methyl-4-pyrimidinol or IMP), and permethrin (3-phenoxybenzoic acid or 3-PBA) are presented. Information on the kinetic parameters describing absorption and elimination in humans is also presented to aid in interpretation. Metabolite concentrations varied more dramatically across studies for 3-PBA and IMP than for TCPy, with TCPy concentrations about an order of magnitude higher than the 3-PBA concentrations. Temporal variability was high for all metabolites with urinary 3-PBA concentrations slightly more consistent over time than the TCPy concentrations. Urinary biomarker levels provided only limited evidence of applications. The observed relationships between urinary metabolite levels and estimates of pesticide intake may be affected by differences in the contribution of each exposure route to total intake, which may vary with exposure intensity and across individuals

    Antibody binding loop insertions as diversity elements

    Get PDF
    In the use of non-antibody proteins as affinity reagents, diversity has generally been derived from oligonucleotide-encoded random amino acids. Although specific binders of high-affinity have been selected from such libraries, random oligonucleotides often encode stop codons and amino acid combinations that affect protein folding. Recently it has been shown that specific antibody binding loops grafted into heterologous proteins can confer the specific antibody binding activity to the created chimeric protein. In this paper, we examine the use of such antibody binding loops as diversity elements. We first show that we are able to graft a lysozyme-binding antibody loop into green fluorescent protein (GFP), creating a fluorescent protein with lysozyme-binding activity. Subsequently we have developed a PCR method to harvest random binding loops from antibodies and insert them at predefined sites in any protein, using GFP as an example. The majority of such GFP chimeras remain fluorescent, indicating that binding loops do not disrupt folding. This method can be adapted to the creation of other nucleic acid libraries where diversity is flanked by regions of relative sequence conservation, and its availability sets the stage for the use of antibody loop libraries as diversity elements for selection experiments

    Spleen transcriptome response to infection with avian pathogenic Escherichia coli in broiler chickens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Avian pathogenic <it>Escherichia coli </it>(APEC) is detrimental to poultry health and its zoonotic potential is a food safety concern. Regulation of antimicrobials in food-production animals has put greater focus on enhancing host resistance to bacterial infections through genetics. To better define effective mechanism of host resistance, global gene expression in the spleen of chickens, harvested at two times post-infection (PI) with APEC, was measured using microarray technology, in a design that will enable investigation of effects of vaccination, challenge, and pathology level.</p> <p>Results</p> <p>There were 1,101 genes significantly differentially expressed between severely infected and non-infected groups on day 1 PI and 1,723 on day 5 PI. Very little difference was seen between mildly infected and non-infected groups on either time point. Between birds exhibiting mild and severe pathology, there were 2 significantly differentially expressed genes on day 1 PI and 799 on day 5 PI. Groups with greater pathology had more genes with increased expression than decreased expression levels. Several predominate immune pathways, Toll-like receptor, Jak-STAT, and cytokine signaling, were represented between challenged and non-challenged groups. Vaccination had, surprisingly, no detectible effect on gene expression, although it significantly protected the birds from observable gross lesions. Functional characterization of significantly expressed genes revealed unique gene ontology classifications during each time point, with many unique to a particular treatment or class contrast.</p> <p>Conclusions</p> <p>More severe pathology caused by APEC infection was associated with a high level of gene expression differences and increase in gene expression levels. Many of the significantly differentially expressed genes were unique to a particular treatment, pathology level or time point. The present study not only investigates the transcriptomic regulations of APEC infection, but also the degree of pathology associated with that infection. This study will allow for greater discovery into host mechanisms for disease resistance, providing targets for marker assisted selection and advanced drug development.</p
    corecore