331 research outputs found

    Mechanical Strength Comparison of Hydrated and Dehydrated Pteridium Stems

    Get PDF
    In this experiment, the mechanical strength of Pteridium stems was tested in two differing conditions: hydrated and dehydrated. It was hypothesized that there would be an increased performance of hydrated stems in the presence of mechanical stress. In order to test this hypothesis, twelve 20 cm pieces of stems were cut in alternation, separating those that would be dehydrated (6) with those that were hydrated (6). The dehydrated specimens were left to dry over a period of 24 hours. The diameters of each individual stem were measured to account for variation in size and remove excess variables. All twelve stems were placed into the Instron individually and their MOE and MOR were measured. Based on the raw data that was obtained from these tests and analysis of the data performed in the form of a paired t-test, it was concluded that there is not a significant difference between the two. Both the MOE’s and MOR’s of the hydrated and dehydrated stems resulted in p values that were more than the significant 0.05 level. Although the data was found not significantly different, it is an important discovery in the scientific community

    Identifying wildlife reservoirs of neglected taeniid tapeworms : non-invasive diagnosis of endemic Taenia serialis infection in a wild primate population

    Get PDF
    Despite the global distribution and public health consequences of Taenia tapeworms, the life cycles of taeniids infecting wildlife hosts remain largely undescribed. The larval stage of Taenia serialis commonly parasitizes rodents and lagomorphs, but has been reported in a wide range of hosts that includes geladas (Theropithecus gelada), primates endemic to Ethiopia. Geladas exhibit protuberant larval cysts indicative of advanced T. serialis infection that are associated with high mortality. However, non-protuberant larvae can develop in deep tissue or the abdominal cavity, leading to underestimates of prevalence based solely on observable cysts. We adapted a non-invasive monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) to detect circulating Taenia spp. antigen in dried gelada urine. Analysis revealed that this assay was highly accurate in detecting Taenia antigen, with 98.4% specificity, 98.5% sensitivity, and an area under the curve of 0.99. We used this assay to investigate the prevalence of T. serialis infection in a wild gelada population, finding that infection is substantially more widespread than the occurrence of visible T. serialis cysts (16.4% tested positive at least once, while only 6% of the same population exhibited cysts). We examined whether age or sex predicted T. serialis infection as indicated by external cysts and antigen presence. Contrary to the female-bias observed in many Taenia-host systems, we found no significant sex bias in either cyst presence or antigen presence. Age, on the other hand, predicted cyst presence (older individuals were more likely to show cysts) but not antigen presence. We interpret this finding to indicate that T. serialis may infect individuals early in life but only result in visible disease later in life. This is the first application of an antigen ELISA to the study of larval Taenia infection in wildlife, opening the doors to the identification and description of infection dynamics in reservoir populations

    Unconventional anomalous Hall effect from antiferromagnetic domain walls of N d2 i r2 O7 thin films

    Get PDF
    Ferroic domain walls (DWs) create different symmetries and ordered states compared with those in single-domain bulk materials. In particular, the DWs of an antiferromagnet with noncoplanar spin structure have a distinct symmetry that cannot be realized in those of their ferromagnet counterparts. In this paper, we show that an unconventional anomalous Hall effect (AHE) can arise from the DWs of a noncoplanar antiferromagnet, Nd2Ir2O7. Bulk Nd2Ir2O7 has a cubic symmetry; thus, its Hall signal should be zero without an applied magnetic field. The DWs generated in this material break the twofold rotational symmetry, which allows for finite anomalous Hall conductivity. A strong f-d exchange interaction between the Nd and Ir magnetic moments significantly influences antiferromagnetic (AFM) domain switching. Our epitaxial Nd2Ir2O7 thin film showed a large enhancement of the AHE signal when the AFM domains switched, indicating that the AHE is mainly due to DWs. Our paper highlights the symmetry-broken interface of AFM materials as a means of exploring topological effects and their relevant applications. © 2018 American Physical Societ

    Building a fault-tolerant quantum computer using concatenated cat codes

    Get PDF
    We present a comprehensive architectural analysis for a fault-tolerant quantum computer based on cat codes concatenated with outer quantum error-correcting codes. For the physical hardware, we propose a system of acoustic resonators coupled to superconducting circuits with a two-dimensional layout. Using estimated near-term physical parameters for electro-acoustic systems, we perform a detailed error analysis of measurements and gates, including CNOT and Toffoli gates. Having built a realistic noise model, we numerically simulate quantum error correction when the outer code is either a repetition code or a thin rectangular surface code. Our next step toward universal fault-tolerant quantum computation is a protocol for fault-tolerant Toffoli magic state preparation that significantly improves upon the fidelity of physical Toffoli gates at very low qubit cost. To achieve even lower overheads, we devise a new magic-state distillation protocol for Toffoli states. Combining these results together, we obtain realistic full-resource estimates of the physical error rates and overheads needed to run useful fault-tolerant quantum algorithms. We find that with around 1,000 superconducting circuit components, one could construct a fault-tolerant quantum computer that can run circuits which are intractable for classical supercomputers. Hardware with 32,000 superconducting circuit components, in turn, could simulate the Hubbard model in a regime beyond the reach of classical computing

    phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism

    Get PDF
    It is well accepted that lateral redistribution of the phytohormone auxin underlies the bending of plant organs towards light. In monocots, photoreception occurs at the shoot tip above the region of differential growth. Despite more than a century of research, it is still unresolved how light regulates auxin distribution and where this occurs in dicots. Here, we establish a system in Arabidopsis thaliana to study hypocotyl phototropism in the absence of developmental events associated with seedling photomorphogenesis. We show that auxin redistribution to the epidermal sites of action occurs at and above the hypocotyl apex, not at the elongation zone. Within this region, we identify the auxin efflux transporter ATP-BINDING CASSETTE B19 (ABCB19) as a substrate target for the photoreceptor kinase PHOTOTROPIN 1 (phot1). Heterologous expression and physiological analyses indicate that phosphorylation of ABCB19 by phot1 inhibits its efflux activity, thereby increasing auxin levels in and above the hypocotyl apex to halt vertical growth and prime lateral fluxes that are subsequently channeled to the elongation zone by PIN-FORMED 3 (PIN3). Together, these results provide new insights into the roles of ABCB19 and PIN3 in establishing phototropic curvatures and demonstrate that the proximity of light perception and differential phototropic growth is conserved in angiosperm
    corecore