17 research outputs found

    Common principles and best practices for engineering microbiomes

    Get PDF
    Despite broad scientific interest in harnessing the power of Earth's microbiomes, knowledge gaps hinder their efficient use for addressing urgent societal and environmental challenges. We argue hat structuring research and technology developments around a design-build-test-learn (DBTL) cycle will advance microbiome engineering and spur new discoveries on the basic scientific principles governing microbiome function. In this Review, we present key elements of an iterative DBTL cycle for microbiome engineering, focusing on generalizable approaches, including top-down and bottom-up design processes, synthetic and self-assembled construction methods, and emerging tools to analyze microbiome function. These approaches can be used to harness microbiomes for broad applications related to medicine, agriculture, energy, and the environment. We also discuss key challenges and opportunities of each approach and synthesize them into best practice guidelines for engineering microbiomes. We anticipate that adoption of a DBTL framework will rapidly advance microbiome-based biotechnologies aimed at improving human and animal health, agriculture, and enabling the bioeconomy

    Frequency and Prognostic Impact of ALK Amplifications and Mutations in the European Neuroblastoma Study Group (SIOPEN) High-Risk Neuroblastoma Trial (HR-NBL1).

    Get PDF
    In neuroblastoma (NB), the ALK receptor tyrosine kinase can be constitutively activated through activating point mutations or genomic amplification. We studied ALK genetic alterations in high-risk (HR) patients on the HR-NBL1/SIOPEN trial to determine their frequency, correlation with clinical parameters, and prognostic impact. Diagnostic tumor samples were available from 1,092 HR-NBL1/SIOPEN patients to determine ALK amplification status (n = 330), ALK mutational profile (n = 191), or both (n = 571). Genomic ALK amplification (ALKa) was detected in 4.5% of cases (41 out of 901), all except one with MYCN amplification (MNA). ALKa was associated with a significantly poorer overall survival (OS) (5-year OS: ALKa [n = 41] 28% [95% CI, 15 to 42]; no-ALKa [n = 860] 51% [95% CI, 47 to 54], [P < .001]), particularly in cases with metastatic disease. ALK mutations (ALKm) were detected at a clonal level (> 20% mutated allele fraction) in 10% of cases (76 out of 762) and at a subclonal level (mutated allele fraction 0.1%-20%) in 3.9% of patients (30 out of 762), with a strong correlation between the presence of ALKm and MNA (P < .001). Among 571 cases with known ALKa and ALKm status, a statistically significant difference in OS was observed between cases with ALKa or clonal ALKm versus subclonal ALKm or no ALK alterations (5-year OS: ALKa [n = 19], 26% [95% CI, 10 to 47], clonal ALKm [n = 65] 33% [95% CI, 21 to 44], subclonal ALKm (n = 22) 48% [95% CI, 26 to 67], and no alteration [n = 465], 51% [95% CI, 46 to 55], respectively; P = .001). Importantly, in a multivariate model, involvement of more than one metastatic compartment (hazard ratio [HR], 2.87; P < .001), ALKa (HR, 2.38; P = .004), and clonal ALKm (HR, 1.77; P = .001) were independent predictors of poor outcome. Genetic alterations of ALK (clonal mutations and amplifications) in HR-NB are independent predictors of poorer survival. These data provide a rationale for integration of ALK inhibitors in upfront treatment of HR-NB with ALK alterations

    Presence of Rhodocyclus in a full-scale wastewater treatment plant and their participation in enhanced biological phosphorus removal

    No full text
    The objective of this research was to assess the relevance of organisms related to Rhodocyclus in enhanced biological phosphorus removal in full-scale wastewater treatment plants. The presence of these organisms in full-scale plants was first confirmed by fluorescent in situ hybridization. To address which organisms were involved in phosphorus removal, a method was developed which selected polyphosphate-accumulating organisms from activated sludge samples by DAPI staining and flow cytometry. Sorted samples were characterized using fluorescent in situ hybridization. The results of these analyses confirmed the presence of organisms related to Rhodocyclus in full-scale wastewater treatment plants and supported the involvement of these organisms in enhanced biological phosphorus removal. However, a significant fraction of the polyphosphate-accumulating organisms were not related to Rhodocyclus

    Whole-community metagenomics in two different anammox configurations: Process performance and community structure

    No full text
    Contains fulltext : 175487.pdf (publisher's version ) (Closed access

    Effect of grain maturity stage on the quality of sorghum BRS-610 silages

    No full text
    The quality of sorghum BRS-610 silages in seven stages of grain maturity, between the milky and dry stage, for determination of the ideal moment of ensilage was evaluated. The silos were open after 56 days of fermentation. The values for dry matter of silages increased from 199 to 473g/kg or from 19.9 to 47.3%, with the advance of stage maturity of grains. As for the quality of fermentation, the silages may be classified as excellent quality in every stage of maturity. The lower values of neutral detergent fiber, 539g/kg or 53.9%, and acid detergent fiber, 307g/kg or 30.7%, were observed between the milky/dough to dough/dent stages. Regression analysis indicated an increase in values of lignin - 0.3 unit por stage - and reduction in values of in vitro dry matter digestibility - -2.5 units por stage - with the advance of the grain's stage maturity. The ensilage of sorghum BRS-610 between the milky/dough and dough stage ensure very good fermentation and nutritive value of silage
    corecore