117 research outputs found
The Second Wind in McArdle Patients: Fitness Matters
Glucogenosis tipo 5; Deficiencia de miofosforilasa; Umbral de ventilaciĂłnGlycogenosis type 5; Myophosphorylase deficiency; Ventilatory thresholdGlucogenosi tipus 5; DeficiĂšncia de miofosforilasa; Llindar ventilatoriBackground: The âsecond windâ (SW) phenomenonâcommonly referring to both an initial period of marked intolerance to dynamic exercise (e.g., brisk walking) that is not followed by perceived improvement and disappearance of previous tachycardia (i.e., the actual âSWâ) until 6â10 min has elapsedâis an almost unique feature of McArdle disease that limits adherence to an active lifestyle. In this regard, an increase in the workload eliciting the SW could potentially translate into an improved patientsâ exercise tolerance in daily life. We aimed to determine whether aerobic fitness and physical activity (PA) levels are correlated with the minimum workload eliciting the SW in McArdle patientsâas well as with the corresponding heart rate value. We also compared the SW variables and aerobic fitness indicators in inactive vs. active patients.
Methods: Fifty-four McArdle patients (24 women, mean ± SD age 33 ± 12 years) performed 12-min constant-load and maximum ramp-like cycle-ergometer tests for SW detection and aerobic fitness [peak oxygen uptake (VO2peak) and workload and ventilatory threshold] determination, respectively. They were categorized as physically active/inactive during the prior 6 months (active = reporting â„150 min/week or â„75 min/week in moderate or vigorous-intensity aerobic PA, respectively) and were also asked on their self-report of the SW.
Results: Both peak and submaximal indicators of aerobic fitness obtained in the ramp tests were significantly correlated with the workload of the SW test, with a particularly strong correlation for the VO2peak and peak workload attained by the patients (both Pearsonâs coefficients > 0.70). Twenty (seven women) and 24 patients (18 women) were categorized as physically active and inactive, respectively. Not only the aerobic fitness level [âŒ18â19% higher values of VO2peak (mlâ
kgâ1â
minâ1)] but also the workload of the SW tests was significantly higher in active than in inactive patients. All the inactive patients reported that they experienced the SW during walking/brisk walking in daily life, whereas active patients only reported experiencing this phenomenon during more strenuous activities (very brisk walking/jogging and bicycling).
Conclusion: A higher aerobic fitness and an active lifestyle are associated with a higher workload eliciting the so-called SW phenomenon in patients with McArdle disease, which has a positive impact on their exercise tolerance during daily living.Research by AL, CF-L, GN-G, MM, and TP was funded by the Instituto de Salud Carlos III (ISCIII) and Fondos Feder (grants PI18/00139, PI20/00645, PI18/00713, PI17/00093, and PI19/01313). CF-L and GN-G were supported by Miguel Servet contracts (CP18/00034 and CPII19/00021, respectively) from ISCIII. The funders had no role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the manuscript for publication
DNA Replication Timing Is Maintained Genome-Wide in Primary Human Myoblasts Independent of D4Z4 Contraction in FSH Muscular Dystrophy
Facioscapulohumeral muscular dystrophy (FSHD) is linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35.2 from 11-100 copies to 1-10 copies. The extent to which D4Z4 contraction at 4q35.2 affects overall 4q35.2 chromatin organization remains unclear. Because DNA replication timing is highly predictive of long-range chromatin interactions, we generated genome-wide replication-timing profiles for FSHD and control myogenic precursor cells. We compared non-immortalized myoblasts from four FSHD patients and three control individuals to each other and to a variety of other human cell types. This study also represents the first genome-wide comparison of replication timing profiles in non-immortalized human cell cultures. Myoblasts from both control and FSHD individuals all shared a myoblast-specific replication profile. In contrast, male and female individuals were readily distinguished by monoallelic differences in replication timing at DXZ4 and other regions across the X chromosome affected by X inactivation. We conclude that replication timing is a robust cell-type specific feature that is unaffected by FSHD-related D4Z4 contraction
Preclinical Research in McArdle Disease: A Review of Research Models and Therapeutic Strategies
McArdle disease; Glycogen phosphorylase; Research modelsEnfermedad de McArdle; GlucĂłgeno fosforilasa; Modelos de investigaciĂłnMalaltia de McArdle; Glicogen fosforilasa; Models de recercaMcArdle disease is an autosomal recessive disorder of muscle glycogen metabolism caused by pathogenic mutations in the PYGM gene, which encodes the skeletal muscle-specific isoform of glycogen phosphorylase. Clinical symptoms are mainly characterized by transient acute âcrisesâ of early fatigue, myalgia and contractures, which can be accompanied by rhabdomyolysis. Owing to the difficulty of performing mechanistic studies in patients that often rely on invasive techniques, preclinical models have been used for decades, thereby contributing to gain insight into the pathophysiology and pathobiology of human diseases. In the present work, we describe the existing in vitro and in vivo preclinical models for McArdle disease and review the insights these models have provided. In addition, despite presenting some differences with the typical patientâs phenotype, these models allow for a deep study of the different features of the disease while representing a necessary preclinical step to assess the efficacy and safety of possible treatments before they are tested in patients.The present manuscript was funded by grants received from the Fondo de Investigaciones Sanitarias (FIS, grant PI19/01313 and PI17/2052) and co-funded by âFondos FEDERâ
Low aerobic capacity in McArdle disease: A role for mitochondrial network impairment?
Aerobic capacity; Glycogen; McArdle diseaseCapacidad aerĂłbica; GlucĂłgeno; Enfermedad de McArdleCapacitat aerĂČbica; Glicogen; Malaltia de McArdleBackground
McArdle disease is caused by myophosphorylase deficiency and results in complete inability for muscle glycogen breakdown. A hallmark of this condition is muscle oxidation impairment (e.g., low peak oxygen uptake (VO2peak)), a phenomenon traditionally attributed to reduced glycolytic flux and Krebs cycle anaplerosis. Here we hypothesized an additional role for muscle mitochondrial network alterations associated with massive intracellular glycogen accumulation.
Methods
We analyzed in depth mitochondrial characteristics-content, biogenesis, ultrastructure-and network integrity in skeletal-muscle from McArdle/control mice and two patients. We also determined VO2peak in patients (both sexes, N = 145) and healthy controls (N = 133).
Results
Besides corroborating very poor VO2peak values in patients and impairment in muscle glycolytic flux, we found that, in McArdle muscle: (a) damaged fibers are likely those with a higher mitochondrial and glycogen content, which show major disruption of the three main cytoskeleton components-actin microfilaments, microtubules and intermediate filaments-thereby contributing to mitochondrial network disruption in skeletal muscle fibers; (b) there was an altered subcellular localization of mitochondrial fission/fusion proteins and of the sarcoplasmic reticulum protein calsequestrin-with subsequent alteration in mitochondrial dynamics/function; impairment in mitochondrial content/biogenesis; and (c) several OXPHOS-related complex proteins/activities were also affected.
Conclusions
In McArdle disease, severe muscle oxidative capacity impairment could also be explained by a disruption of the mitochondrial network, at least in those fibers with a higher capacity for glycogen accumulation. Our findings might pave the way for future research addressing the potential involvement of mitochondrial network alterations in the pathophysiology of other glycogenoses.The present study was funded by grants received from the Fondo de Investigaciones Sanitarias (FIS, PI17/02052, PI18/00139, PI19/01313, and PI20/00645) and cofunded by âFondos FEDERâ. Gisela Nogales-Gadea and Carmen Fiuza-Luces are supported by the Miguel Servet research contracts (ISCIII CD14/00032 and CP18/00034, respectively and cofounded by Fondos FEDERâČ). Research by Pedro L. Valenzuela is funded by a postdoctoral contract granted by Instituto de Salud Carlos III (Sara Borrell, CD21/00138). Monica Villarreal Salazar is supported by the Mexican National Council for Science and Technology (CONACYT)
Genomic Profiling of Messenger RNAs and MicroRNAs Reveals Potential Mechanisms of TWEAK-Induced Skeletal Muscle Wasting in Mice
Skeletal muscle wasting is a devastating complication of several physiological and pathophysiological conditions. Inflammatory cytokines play an important role in the loss of skeletal muscle mass in various chronic diseases. We have recently reported that proinflammatory cytokine TWEAK is a major muscle-wasting cytokine. Emerging evidence suggests that gene expression is regulated not only at transcriptional level but also at post-transcriptional level through the expression of specific non-coding microRNAs (miRs) which can affect the stability and/or translation of target mRNA. However, the role of miRs in skeletal muscle wasting is unknown.To understand the mechanism of action of TWEAK in skeletal muscle, we performed mRNA and miRs expression profile of control and TWEAK-treated myotubes. TWEAK increased the expression of a number of genes involved in inflammatory response and fibrosis and reduced the expression of few cytoskeletal gene (e.g. Myh4, Ankrd2, and TCap) and metabolic enzymes (e.g. Pgam2). Low density miR array demonstrated that TWEAK inhibits the expression of several miRs including muscle-specific miR-1-1, miR-1-2, miR-133a, miR-133b and miR-206. The expression of a few miRs including miR-146a and miR-455 was found to be significantly increased in response to TWEAK treatment. Ingenuity pathway analysis showed that several genes affected by TWEAK are known/putative targets of miRs. Our cDNA microarray data are consistent with miRs profiling. The levels of specific mRNAs and miRs were also found to be similarly regulated in atrophying skeletal muscle of transgenic mice (Tg) mice expressing TWEAK.Our results suggest that TWEAK affects the expression of several genes and microRNAs involved in inflammatory response, fibrosis, extracellular matrix remodeling, and proteolytic degradation which might be responsible for TWEAK-induced skeletal muscle loss
âSmoking Genesâ: A Genetic Association Study
Some controversy exists on the specific genetic variants that are associated with nicotine dependence and smoking-related phenotypes. The purpose of this study was to analyse the association of smoking status and smoking-related phenotypes (included nicotine dependence) with 17 candidate genetic variants: CYP2A6*1Ă2, CYP2A6*2 (1799T>A) [rs1801272], CYP2A6*9 (â48T>G) [rs28399433], CYP2A6*12, CYP2A13*2 (3375C>T) [rs8192789], CYP2A13*3 (7520C>G), CYP2A13*4 (579G>A), CYP2A13*7 (578C>T) [rs72552266], CYP2B6*4 (785A>G), CYP2B6*9 (516G>T), CHRNA3 546C>T [rs578776], CHRNA5 1192G>A [rs16969968], CNR1 3764C>G [rs6928499], DRD2-ANKK1 2137G>A (Taq1A) [rs1800497], 5HTT LPR, HTR2A â1438A>G [rs6311] and OPRM1 118A>G [rs1799971]. We studied the genotypes of the aforementioned polymorphisms in a cohort of Spanish smokers (cases, Nâ=â126) and ethnically matched never smokers (controls, Nâ=â80). The results showed significant between-group differences for CYP2A6*2 and CYP2A6*12 (both P<0.001). Compared with carriers of variant alleles, the odds ratio (OR) for being a non-smoker in individuals with the wild-type genotype of CYP2A6*12 and DRD2-ANKK1 2137G>A (Taq1A) polymorphisms was 3.60 (95%CI: 1.75, 7.44) and 2.63 (95%CI: 1.41, 4.89) respectively. Compared with the wild-type genotype, the OR for being a non-smoker in carriers of the minor CYP2A6*2 allele was 1.80 (95%CI: 1.24, 2.65). We found a significant genotype effect (all Pâ€0.017) for the following smoking-related phenotypes: (i) cigarettes smoked per day and CYP2A13*3; (ii) pack years smoked and CYP2A6*2, CYP2A6*1Ă2, CYP2A13*7, CYP2B6*4 and DRD2-ANKK1 2137G>A (Taq1A); (iii) nicotine dependence (assessed with the Fagestrom test) and CYP2A6*9. Overall, our results suggest that genetic variants potentially involved in nicotine metabolization (mainly, CYP2A6 polymorphisms) are those showing the strongest association with smoking-related phenotypes, as opposed to genetic variants influencing the brain effects of nicotine, e.g., through nicotinic acetylcholine (CHRNA5), serotoninergic (HTR2A), opioid (OPRM1) or cannabinoid receptors (CNR1)
Expression of Glycogen Phosphorylase Isoforms in Cultured Muscle from Patients with McArdle's Disease Carrying the p.R771PfsX33 PYGM Mutation
Mutations in the PYGM gene encoding skeletal muscle glycogen phosphorylase (GP) cause a metabolic disorder known as McArdle's disease. Previous studies in muscle biopsies and cultured muscle cells from McArdle patients have shown that PYGM mutations abolish GP activity in skeletal muscle, but that the enzyme activity reappears when muscle cells are in culture. The identification of the GP isoenzyme that accounts for this activity remains controversial
A New Mouse Model for Marfan Syndrome Presents Phenotypic Variability Associated with the Genetic Background and Overall Levels of Fbn1 Expression
Marfan syndrome is an autosomal dominant disease of connective tissue caused by mutations in the fibrillin-1 encoding gene FBN1. Patients present cardiovascular, ocular and skeletal manifestations, and although being fully penetrant, MFS is characterized by a wide clinical variability both within and between families. Here we describe a new mouse model of MFS that recapitulates the clinical heterogeneity of the syndrome in humans. Heterozygotes for the mutant Fbn1 allele mgÎloxPneo, carrying the same internal deletion of exons 19â24 as the mgÎ mouse model, present defective microfibrillar deposition, emphysema, deterioration of aortic wall and kyphosis. However, the onset of a clinical phenotypes is earlier in the 129/Sv than in C57BL/6 background, indicating the existence of genetic modifiers of MFS between these two mouse strains. In addition, we characterized a wide clinical variability within the 129/Sv congenic heterozygotes, suggesting involvement of epigenetic factors in disease severity. Finally, we show a strong negative correlation between overall levels of Fbn1 expression and the severity of the phenotypes, corroborating the suggested protective role of normal fibrillin-1 in MFS pathogenesis, and supporting the development of therapies based on increasing Fbn1 expression
Senescence plays a role in myotonic dystrophy type 1 br
Myotonic dystrophy type 1 (DM1; MIM #160900) is an autosomal dominant disorder, clinically characterized by progressive muscular weakness and multisystem degeneration. The broad phenotypes observed in patients with DM1 resemble the appearance of an accelerated aging process. However, the molecular mechanisms underlying these phenotypes remain largely unknown. Transcriptomic analysis of fibroblasts derived from patients with DM1 and healthy individuals revealed a decrease in cell cycle activity, cell division, and DNA damage response in DM1, all of which related to the accumulation of cellular senescence. The data from transcriptome analyses were corroborated in human myoblasts and blood samples, as well as in mouse and Drosophila models of the disease. Serial passage studies in vitro confirmed the accelerated increase in senescence and the acquisition of a senescence-associated secretory phenotype in DM1 fibroblasts, whereas the DM1 Drosophila model showed reduced longevity and impaired locomotor activity. Moreover, functional studies highlighted the impact of BMI1 and downstream p16INK4A/ RB and ARF/p53/p21CIP pathways in DM1-associated cellular phenotypes. Importantly, treatment with the senolytic compounds Quercetin, Dasatinib, or Navitoclax reversed the accelerated aging phenotypes in both DM1 fibroblasts in vitro and in Drosophila in vivo. Our results identify the accumulation of senescence as part of DM1 pathophysiology and, therefore, demonstrate the efficacy of senolytic compounds in the preclinical setting.MGP and ASA are recipient of predoctoral fellowships from the University of the Basque Country (PIF 15/245) and Carlos III Institute (FI17/00250), respectively. We thank the methodological support service of Biodonostia Institute for help with statistical analysis. This work is supported by grants from the Instituto Salud Carlos III and FEDER funds (PI16/01580, PI17/01841, DTS18/00181, PI19/01355, CPII19/00021, and DTS20/00179), La Caixa, and Health department from Basque Country (2017222021, 2018222021, and 2020333008)
Novel and Recurrent Mutations of WISP3 in Two Chinese Families with Progressive Pseudorheumatoid Dysplasia
BACKGROUND: The WNT1-inducible signaling pathway protein 3 (WISP3), which belongs to the CCN (cysteine-rich protein 61, connective tissue growth factor, nephroblastoma overexpressed) family, is a secreted cysteine-rich matricellular protein that is involved in chondrogenesis, osteogenesis and tumorigenesis. WISP3 gene mutations are associated with progressive pseudorheumatoid dysplasia (PPD, OMIM208230), an autosomal recessive genetic disease that is characterized by the swelling of multiple joints and disproportionate dwarfism. METHODOLOGY/PRINCIPAL FINDINGS: Four PPD patients from two unrelated Chinese families were recruited for this study. The clinical diagnosis was confirmed by medical history, physical examinations, laboratory results and radiological abnormalities. WISP3 mutations were detected by direct DNA sequence analysis. In total, four different mutations were identified, which consisted of two missense mutations, one deletion and one insertion that spanned exons 3, 5 and 6 of the WISP3 gene. One of the missense mutations (c.342T>G/p.C114W) and a seven-base pair frameshift deletion (c.716_722del/p.E239fs*16) were novel. The other missense mutation (c.1000T>C/p. S334P) and the insertion mutation (c.866_867insA/p.Q289fs*31) had previously been identified in Chinese patients. All four cases had a compound heterozygous status, and their parents were heterozygous carriers of these mutations. CONCLUSIONS/SIGNIFICANCE: The results of our study expand the spectrum of WISP3 mutations that are associated with PPD and further elucidate the function of WISP3
- âŠ