18 research outputs found

    Cloning TRPC1 to enhance Calcium signal in a model of bitter taste transduction.

    Get PDF
    The sense of taste is used to evaluate the quality of food. In particular, animals detect at least five basic tastes: sweet, bitter, salty, umami and sour. Each one is associated to a given food’s property, for instance bitter taste has been thought to be necessary to detect toxins. Bitter taste transduction starts with the binding of bitter tastant with one or more bitter taste receptors (TAS2Rs). They are G protein-coupled receptors (GPCRs) and the binding with tastants leads to the activation of G protein α-gustducin. In particular, βγ subunits activate phospholipase PLCβ2. This event causes the production of inositol 1,4,5-thriphosphate (IP3) and release of Ca2+ from internal stores. The elevation of Ca2+ activates transient receptor potential channel M5 (TRPM5) and this allows the depolarization of the cell. The elevation of [Ca2+]i is the studied event to understand the behavior of taste receptors in presence of different tastants. Indeed, although some receptors give a strong signal with one tastant, the same receptors could give a low signal with other molecules, or some receptors may give low signal per se. Unfortunately TRPM5 does not allow Ca2+ entry and it could not be used in our experiments. Hence, since the mechanism of activation by elevation of intracellular Ca2+ is common between TRPM5 and TRPC1, another TRP channel, and since the latter is permeable also for Ca2+ , further increasing the [Ca2+]i , we chose to clone TRPC1 in a cellular model of bitter taste transduction, trying to enhance the calcium signal. We started from an extract of fetal human brain to isolate the cDNA of TRPC1, then we included the cDNA in an expression vector and transiently transfected HEK293 cells, with both TRPC1 and a TAS2R. These cells already stably express a chimeric G-protein α subunit G16gust44, involved in the signal pathway of taste. Thanks to the fluorescence given from Fluo-4 when it binds Ca2+, we studied the Ca2+ signals obtaining different profiles in presence or not of TRPC1. For example, in cells expressing TRPC1 and TAS2R43 or TAS2R14 the signal was higher than in cells transfected with TAS2R and mock (plasmid without any insert, used as negative control). On the contrary, with TAS2R10 we had the opposite result, with a higher signal in cells expressing only the receptor. Improving Ca2+ signal could be possible to deorphanize receptors whose tastants are still not known just because of low signal, or to find other molecules that activate a given TAS2R and so extent the range of activators of that receptor. Moreover, it could be possible to study inhibitors in those receptors that have strong signal with a tastant and low signal with other(s) substance(s)

    Homozygous loss of autism-risk gene CNTNAP2 results in reduced local and long-range prefrontal functional connectivity

    Get PDF
    Functional connectivity aberrancies, as measured with resting-state fMRI (rsfMRI), have been consistently observed in the brain of autism spectrum disorders (ASD) patients. However, the genetic and neurobiological underpinnings of these findings remain unclear. Homozygous mutations in Contactin Associated Protein-like 2 (CNTNAP2), a neurexin-related cell-adhesion protein, are strongly linked to autism and epilepsy. Here we used rsfMRI to show that homozygous mice lacking Cntnap2 exhibit reduced long-range and local functional connectivity in prefrontal and midline brain “connectivity hubs”. Long-range rsfMRI connectivity impairments affected heteromodal cortical regions and were prominent between frontoposterior components of the mouse default-mode network (DMN), an effect that was associated with reduced social investigation, a core “autism trait” in mice. Notably, viral tracing revealed reduced frequency of prefrontal-projecting neural clusters in the cingulate cortex of Cntnap2-/- mutants, suggesting a possible contribution of defective mesoscale axonal wiring to the observed functional impairments. Macroscale cortico-cortical white matter organization appeared to be otherwise preserved in these animals. These findings reveal a key contribution of ASD-associated gene CNTNAP2 in modulating macroscale functional connectivity, and suggest that homozygous loss-of-function mutations in this gene may predispose to neurodevelopmental disorders and autism through a selective dysregulation of connectivity in integrative prefrontal areas

    Deletion of autism risk gene Shank3 disrupts prefrontal connectivity

    Get PDF
    Mutations in the synaptic scaffolding protein Shank3 are a major cause of autism, and are associated with prominent intellectual and language deficits. However, the neural mechanisms whereby SHANK3 deficiency affects higher order socio-communicative functions remain unclear. Using high-resolution functional and structural MRI in adult male mice, here we show that loss of Shank3 (Shank3B-/-) results in disrupted local and long-range prefrontal and fronto-striatal functional connectivity. We document that prefrontal hypo-connectivity is associated with reduced short-range cortical projections density, and reduced gray matter volume. Finally, we show that prefrontal disconnectivity is predictive of social communication deficits, as assessed with ultrasound vocalization recordings. Collectively, our results reveal a critical role of SHANK3 in the development of prefrontal anatomy and function, and suggest that SHANK3 deficiency may predispose to intellectual disability and socio-communicative impairments via dysregulation of higher-order cortical connectivity

    Serotonin drives striatal synaptic plasticity in a sex-related manner.

    Get PDF
    Abstract Introduction Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions – including motor control, learning and reward processing – and is often disrupted in disease conditions. Despite intense research pointing toward a dynamic interplay between glutamate, dopamine (DA), and serotonin (5-HT) neurotransmission, their precise circuit and synaptic mechanisms regulating their role in striatal plasticity are still unclear. Here, we analyze the role of serotonergic raphe-striatal innervation in the regulation of DA-dependent corticostriatal plasticity. Methods Mice (males and females, 2–6 months of age) were housed in standard plexiglass cages at constant temperature (22 ± 1 °C) and maintained on a 12/12 h light/dark cycle with food and demineralized water ad libitum. In the present study, we used a knock-in mouse line in which the green fluorescent protein reporter gene (GFP) replaced the I Tph2 exon (Tph2GFP mice), allowing selective expression of GFP in the whole 5-HT system, highlighting both somata and neuritis of serotonergic neurons. Heterozygous, Tph2+/GFP, mice were intercrossed to obtain experimental cohorts, which included Wild-type (Tph2+/+), Heterozygous (Tph2+/GFP), and Mutant serotonin-depleted (Tph2GFP/GFP) animals. Results Using male and female mice, carrying on different Tph2 gene dosages, we show that Tph2 gene modulation results in sex-specific corticostriatal abnormalities, encompassing the abnormal amplitude of spontaneous glutamatergic transmission and the loss of Long Term Potentiation (LTP) in Tph2GFP/GFP mice of both sexes, while this form of plasticity is normally expressed in control mice (Tph2+/+). Once LTP is induced, only the Tph2+/GFP female mice present a loss of synaptic depotentiation. Conclusion We showed a relevant role of the interaction between dopaminergic and serotonergic systems in controlling striatal synaptic plasticity. Overall, our data unveil that 5-HT plays a primary role in regulating DA-dependent corticostriatal plasticity in a sex-related manner and propose altered 5-HT levels as a critical determinant of disease-associated plasticity defects

    Combining robotics with enhanced serotonin-driven cortical plasticity improves post-stroke motor recovery.

    Get PDF
    Despite recent progresses in robotic rehabilitation technologies, their efficacy for post-stroke motor recovery is still limited. Such limitations might stem from the insufficient enhancement of plasticity mechanisms, crucial for functional recovery. Here, we designed a clinically relevant strategy that combines robotic rehabilitation with chemogenetic stimulation of serotonin release to boost plasticity. These two approaches acted synergistically to enhance post-stroke motor performance. Indeed, mice treated with our combined therapy showed substantial functional gains that persisted beyond the treatment period and generalized to non-trained tasks. Motor recovery was associated with a reduction in electrophysiological and neuroanatomical markers of GABAergic neurotransmission, suggesting disinhibition in perilesional areas. To unveil the translational potentialities of our approach, we specifically targeted the serotonin 1A receptor by delivering Buspirone, a clinically approved drug, in stroke mice undergoing robotic rehabilitation. Administration of Buspirone restored motor impairments similarly to what observed with chemogenetic stimulation, showing the immediate translational potential of this combined approach to significantly improve motor recovery after stroke

    mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity.

    Get PDF
    Postmortem studies have revealed increased density of excitatory synapses in the brains of individuals with autism spectrum disorder (ASD), with a putative link to aberrant mTOR-dependent synaptic pruning. ASD is also characterized by atypical macroscale functional connectivity as measured with resting-state fMRI (rsfMRI). These observations raise the question of whether excess of synapses causes aberrant functional connectivity in ASD. Using rsfMRI, electrophysiology and in silico modelling in Tsc2 haploinsufficient mice, we show that mTOR-dependent increased spine density is associated with ASD -like stereotypies and cortico-striatal hyperconnectivity. These deficits are completely rescued by pharmacological inhibition of mTOR. Notably, we further demonstrate that children with idiopathic ASD exhibit analogous cortical-striatal hyperconnectivity, and document that this connectivity fingerprint is enriched for ASD-dysregulated genes interacting with mTOR or Tsc2. Finally, we show that the identified transcriptomic signature is predominantly expressed in a subset of children with autism, thereby defining a segregable autism subtype. Our findings causally link mTOR-related synaptic pathology to large-scale network aberrations, revealing a unifying multi-scale framework that mechanistically reconciles developmental synaptopathy and functional hyperconnectivity in autism

    D-aspartate oxidase gene duplication induces social recognition memory deficit in mice and intellectual disabilities in humans

    Get PDF
    The D-aspartate oxidase (DDO) gene encodes the enzyme responsible for the catabolism of D-aspartate, an atypical amino acid enriched in the mammalian brain and acting as an endogenous NMDA receptor agonist. Considering the key role of NMDA receptors in neurodevelopmental disorders, recent findings suggest a link between D-aspartate dysmetabolism and schizophrenia. To clarify the role of D-aspartate on brain development and functioning, we used a mouse model with constitutive Ddo overexpression and D-aspartate depletion. In these mice, we found reduced number of BrdU-positive dorsal pallium neurons during corticogenesis, and decreased cortical and striatal gray matter volume at adulthood. Brain abnormalities were associated with social recognition memory deficit at juvenile phase, suggesting that early D-aspartate occurrence influences neurodevelopmental related phenotypes. We corroborated this hypothesis by reporting the first clinical case of a young patient with severe intellectual disability, thought disorders and autism spectrum disorder symptomatology, harboring a duplication of a chromosome 6 region, including the entire DDO gene

    Retrograde approach to dissect the mouse connectome and generation of new Rabies Virus tools for functional analysis of synaptically connected neurons

    No full text
    Connectomics research is putting in action a comprehensive analysis to dissect the anatomy of brain circuits and axonal architecture to better understand the neural functioning. Since the dawn of neuroanatomy research, viral tracers have been useful tools to investigate the neural connections. An excellent viral tracer is Rabies Virus (RV), that, thanks to its properties to specifically infect at pre-synaptic terminal can univocally link a target brain area to the relative synaptically connected neurons. However, to take a step forward in understanding neural functions, directly manipulation of the neural genome is required. Here, I describe different projects I worked on during my PhD course that took advantage of RV. First, I joined a project that resulted in drawing a map of serotonergic innervation to the rostral brain. We identified a serotonergic subpopulation characterized by the wiring transmission modality. Second, in collaboration with the Italian Institute of Technology of Rovereto, we analysed the cortical connectivity in the Cntnap2 autism spectrum disorder mouse model. The rsfMRI analysis highlighted an asynchronous activity in the cingulate cortex (CG) that could be ascribed to a reduced PFC-projecting subpopulation in CG identified by means of RV-based retrograde tracing. Third, in order to allow the direct manipulation of the genome of retrograded neurons I developed RV variants expressing iCre and Flpe recombinase enzymes which mediate somatic DNA recombination in presence of specific sites. Fourth, I generated a new non-cytotoxic recombinase-expressing RV tools that allow to manipulate the genome of infected subpopulation and to overcome the time limits of RV allowing long-term experiments

    Development of serotonergic fibers in the post-natal mouse brain

    No full text
    Serotonin (5-HT)-synthetizing neurons, which are confined in the raphe nuclei of the rhombencephalon, provide a pervasive innervation of the central nervous system (CNS) and are involved in the modulation of a plethora of functions in both developing and adult brain. Classical studies have described the post-natal development of serotonergic axons as a linear process of terminal field innervation. However, technical limitations have hampered a fine morphological characterization. With the advent of genetic mouse models, the possibility to label specific neuronal populations allowed the rigorous measurement of their axonal morphological features as well as their developmental dynamics. Here, we used the Tph2GFP knock-in mouse line, in which GFP expression allows punctual identification of serotonergic neurons and axons, for confocal microscope imaging and we performed 3-dimensional reconstruction in order to morphologically characterize the development of serotonergic fibers in specified brain targets from birth to adulthood. Our analysis highlighted region-specific developmental patterns of serotonergic fiber density ranging from a linear and progressive colonization of the target (Caudate/Putamen, Basolateral Amygdala, Geniculate Nucleus and Substantia Nigra) to a transient increase in fiber density (medial Prefrontal Cortex, Globus Pallidus, Somatosensory Cortex and Hippocampus) occurring with a region-specific timing. Despite a common pattern of early post-natal morphological maturation in which a progressive rearrangement from a dot-shaped to a regular and smooth fiber morphology was observed, starting from post-natal day 28 serotonergic fibers acquire the region specific morphological features present in the adult. In conclusion, we provided novel, target-specific insights on the morphology and temporal dynamics of the developing serotonergic fibers

    Reversible Morphological Remodeling of Prefrontal and Hippocampal Serotonergic Fibers by Fluoxetine

    No full text
    Serotonin-releasing fibers depart from the raphe nuclei to profusely innervate the entire central nervous system, displaying in some brain regions high structural plasticity in response to genetically induced abrogation of serotonin synthesis. Chronic fluoxetine treatment used as a tool to model peri-physiological, clinically relevant serotonin elevation is also able to cause structural rearrangements of the serotonergic fibers innervating the hippocampus. Whether this effect is limited to hippocampal-innervating fibers or extends to other populations of axons is not known. Here, we used confocal imaging and three-dimensional (3-D) modeling analysis to expand our morphological investigation of fluoxetine-mediated effects on serotonergic circuitry. We found that chronic treatment with a behaviorally active dose of fluoxetine affects the morphology and reduces the density of serotonergic axons innervating the medial prefrontal cortex, a brain region strongly implicated in the regulation of depressive- and anxiety-like behavior. Axons innervating the somatosensory cortex were unaffected, suggesting differential susceptibility to serotonin changes across cortical areas. Importantly, a 1-month washout period was sufficient to reverse morphological changes in both the medial prefrontal cortex and in the previously characterized hippocampus, as well as to normalize behavior, highlighting an intriguing relationship between axon density and an antidepressant-like effect. Overall, these results further demonstrate the bidirectional plasticity of defined serotonergic axons and provide additional insights into fluoxetine effects on the serotonergic system
    corecore