6,264 research outputs found

    Advanced content-based semantic scene analysis and information retrieval: the SCHEMA project

    Get PDF
    The aim of the SCHEMA Network of Excellence is to bring together a critical mass of universities, research centers, industrial partners and end users, in order to design a reference system for content-based semantic scene analysis, interpretation and understanding. Relevant research areas include: content-based multimedia analysis and automatic annotation of semantic multimedia content, combined textual and multimedia information retrieval, semantic -web, MPEG-7 and MPEG-21 standards, user interfaces and human factors. In this paper, recent advances in content-based analysis, indexing and retrieval of digital media within the SCHEMA Network are presented. These advances will be integrated in the SCHEMA module-based, expandable reference system

    Bose-Einstein transition temperature in a dilute repulsive gas

    Get PDF
    We discuss certain specific features of the calculation of the critical temperature of a dilute repulsive Bose gas. Interactions modify the critical temperature in two different ways. First, for gases in traps, temperature shifts are introduced by a change of the density profile, arising itself from a modification of the equation of state of the gas (reduced compressibility); these shifts can be calculated simply within mean field theory. Second, even in the absence of a trapping potential (homogeneous gas in a box), temperature shifts are introduced by the interactions; they arise from the correlations introduced in the gas, and thus lie inherently beyond mean field theory - in fact, their evaluation requires more elaborate, non-perturbative, calculations. One illustration of this non-perturbative character is provided by the solution of self-consistent equations, which relate together non-linearly the various energy shifts of the single particle levels k. These equations predict that repulsive interactions shift the critical temperature (at constant density) by an amount which is positive, and simply proportional to the scattering length a; nevertheless, the numerical coefficient is difficult to compute. Physically, the increase of the temperature can be interpreted in terms of the reduced density fluctuations introduced by the repulsive interactions, which facilitate the propagation of large exchange cycles across the sample.Comment: two minor corrections, two refs adde

    POLICY DIRECTIONS TO MITIGATE WATER-SUPPLY RISK IN IRRIGATED AGRICULTURE: A FEDERAL PERSPECTIVE

    Get PDF
    Water reallocation to meet mandated flow requirements and trust responsibilities, established in Federal law and water authority, can result in large uncompensated losses to irrigated agriculture. This paper discusses the nature and potential cost of water-supply interruptions due to Federal actions, and provides a comparative assessment of alternative risk-mitigation measures.Resource /Energy Economics and Policy,

    Resolving The Moth at Millimeter Wavelengths

    Full text link
    HD 61005, also known as "The Moth," is one of only a handful of debris disks that exhibit swept-back "wings" thought to be caused by interaction with the ambient interstellar medium (ISM). We present 1.3 mm Submillimeter Array (SMA) observations of the debris disk around HD 61005 at a spatial resolution of 1.9 arcsec that resolve the emission from large grains for the first time. The disk exhibits a double-peaked morphology at millimeter wavelengths, consistent with an optically thin ring viewed close to edge-on. To investigate the disk structure and the properties of the dust grains we simultaneously model the spatially resolved 1.3 mm visibilities and the unresolved spectral energy distribution. The temperatures indicated by the SED are consistent with expected temperatures for grains close to the blowout size located at radii commensurate with the millimeter and scattered light data. We also perform a visibility-domain analysis of the spatial distribution of millimeter-wavelength flux, incorporating constraints on the disk geometry from scattered light imaging, and find suggestive evidence of wavelength-dependent structure. The millimeter-wavelength emission apparently originates predominantly from the thin ring component rather than tracing the "wings" observed in scattered light. The implied segregation of large dust grains in the ring is consistent with an ISM-driven origin for the scattered light wings.Comment: 10 pages, 6 figure

    Dispersion of Klauder's temporally stable coherent states for the hydrogen atom

    Full text link
    We study the dispersion of the "temporally stable" coherent states for the hydrogen atom introduced by Klauder. These are states which under temporal evolution by the hydrogen atom Hamiltonian retain their coherence properties. We show that in the hydrogen atom such wave packets do not move quasi-classically; i.e., they do not follow with no or little dispersion the Keplerian orbits of the classical electron. The poor quantum-classical correspondence does not improve in the semiclassical limit.Comment: 6 pages, 2 figure

    Imaging the Dipole-Dipole Energy Exchange Between Ultracold Rubidium Rydberg Atoms

    Get PDF
    The long-range, anisotropic nature of the interaction among atoms in an ultracold dipolar gas leads to a rich array of possibilities for studying many-body physics. In this work, an ultracold gas of highly excited atoms is used to study energy transport due to the long-range dipole-dipole interaction. A technique is developed to measure both the internal energy states of the interacting Rydberg atoms and their positions in space. This technique is demonstrated by observing energy exchange between two spatially separated groups of Rydberg atoms excited to two different internal states. Simulations confirm the general features of the energy transport in this system and highlight subtleties associated with the homogeneity of the electric field used in this experiment

    STIS spectroscopy of the emission line gas in the nuclei of nearby FR-I galaxies

    Full text link
    We present the results of the analysis of a set of medium resolution spectra, obtained by the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, of the emission line gas present in the nuclei of a complete sample of 21 nearby, early-type galaxies with radio jets (the UGC FR-I Sample). For each galaxy nucleus we present spectroscopic data in the region of H-alpha and the dervived kinematics. We find that in 67% of the nuclei the gas appears to be rotating and, with one exception, the cases where rotation is not seen are either face on or have complex central morphologies. We find that in 62% of the nuclei the fit to the central spectrum is improved by the inclusion of a broad component. The broad components have a mean velocity dispersion of 1349 +/- 345 km\s and are redshifted from the narrow line components (assuming an origin in H-alpha) by 486 +/- 443 km\s.Comment: 119 pages, 26 figures, ApJS Accepted, version with full figures available at http://www.astro.columbia.edu/~jake/pub/fr1datapaper.pd
    • 

    corecore