110 research outputs found

    Mental Function and Obesity

    Get PDF

    Inhibitory Effects of Edaravone, a Free Radical Scavenger, on Cytokine-induced Hyperpermeability of Human Pulmonary Microvascular Endothelial Cells:A Comparison with Dexamethasone and Nitric Oxide Synthase Inhibitor

    Get PDF
    Lung hyperpermeability affects the development of acute respiratory distress syndrome (ARDS), but therapeutic strategies for the control of microvascular permeability have not been established. We examined the effects of edaravone, dexamethasone, and N-monomethyl-L-arginine (L-NMMA) on permeability changes in human pulmonary microvascular endothelial cells (PMVEC) under a hypercytokinemic state. Human PMVEC were seeded in a Boyden chamber. After monolayer confluence was achieved, the culture media were replaced respectively by culture media containing edaravone, dexamethasone, and L-NMMA. After 24-h incubation, the monolayer was stimulated with tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Fluorescein-labeled dextran was added. Then the trans-human PMVEC leak was measured. Expressions of vascular endothelial-cadherin (VE-cadherin) and zonula occludens-1 protein (ZO-1) were evaluated using real-time quantitative polymerase chain reaction and immunofluorescence microscopy. The results showed that TNF-α+IL-1β markedly increased pulmonary microvascular permeability. Pretreatment with edaravone, dexamethasone, or L-NMMA attenuated the hyperpermeability and inhibited the cytokine-induced reduction of VE-cadherin expression on immunofluorescence staining. Edaravone and dexamethasone increased the expression of ZO-1 at both the mRNA and protein levels. Edaravone and dexamethasone inhibited the permeability changes of human PMVEC, at least partly through an enhancement of VE-cadherin. Collectively, these results suggest a potential therapeutic approach for intervention in patients with ARDS

    Risk assessment for hepatitis E virus infection from domestic pigs introduced into an experimental animal facility in a medical school

    Get PDF
    Hepatitis E virus (HEV) is known to cause zoonotic infections from pigs, wild boars and deer. Domestic pigs have been used as an experimental animal model in medical research and training; however, the risks of HEV infection from pigs during animal experiments are largely unknown. Here, we retrospectively investigated the seroprevalence and detection rates of viral RNA in 73 domestic pigs (average 34.5 kg) introduced into an animal experimental facility in a medical school during 2012-2016. We detected anti-HEV immunoglobulin G antibodies in 24 of 73 plasma samples (32.9%), though none of the samples were positive for viral RNA. Plasma samples of 18 pigs were sequentially monitored and were classified into four patterns: sustained positive (5 pigs), sustained negative (5 pigs), conversion to positive (6 pigs) and conversion to negative (2 pigs). HEV genomes were detected in 2 of 4 liver samples from pigs that were transported from the same farm during 2016-2017. Two viral sequences of the overlapping open reading frame (ORF) 2/3 region (97 bp) were identical and phylogenetically fell into genotype 3. A 459-bp length of the ORF2 region of an amplified fragment from a pig transported in 2017 was clustered with the wbJYG1 isolate (subgenotype 3b) with 91.5% (420/459 bp) nucleotide identity. Based on our results, we suggest that domestic pigs introduced into animal facilities carry a potential risk of HEV infection to researchers, trainees and facility staff. Continuous surveillance and precautions are important to prevent HEV infection in animal facilities

    Azithromycin inhibits nontypeable Haemophilus influenzae-induced MUC5AC expression and secretion via inhibition of activator protein-1 in human airway epithelial cells.

    Get PDF
    Nontypeable Haemophilus influenzae (NTHi) is one of the most common pathogens in chronic airway infections and exacerbation. The hallmark of chronic respiratory diseases, including cystic fibrosis, diffuse panbronchiolitis and chronic obstructive pulmonary disease, is mucin overproduction. Prolonged macrolide antibiotic therapy at low doses is known to improve clinical outcome in patients with chronic respiratory diseases via anti-inflammatory effects. In this study, we investigated the effects of macrolide therapy on NTHi-induction of the MUC5AC mucin in human airway epithelial cells. A 15-membered macrolide, azithromycin, but not a 14-membered macrolide, clarithromycin, inhibited NTHi-induction of MUC5AC at both the mRNA and protein levels through selective suppression of activation of the transcription factor activator protein-1. Our findings suggest that each macrolide affects MUC5AC production in different ways and that azithromycin is more suitable for the treatment of NTHi-induced respiratory infection

    Intrinsic Oncogenic Function of Intracellular Connexin26 Protein in Head and Neck Squamous Cell Carcinoma Cells

    Get PDF
    It has long been known that the gap junction is down-regulated in many tumours. One of the downregulation mechanisms is the translocation of connexin, a gap junction protein, from cell membrane into cytoplasm, nucleus, or Golgi apparatus. Interestingly, as tumours progress and reinforce their malignant phenotype, the amount of aberrantly-localised connexin increases in different malignant tumours including oesophageal squamous cell carcinoma, thus suggesting that such an aberrantly-localised connexin should be oncogenic, although gap junctional connexins are often tumour-suppressive. To define the dual roles of connexin in head and neck squamous cell carcinoma (HNSCC), we introduced the wild-type connexin26 (wtCx26) or the mutant Cx26 (icCx26) gene, the product of which carries the amino acid sequence AKKFF, an endoplasmic reticulum-Golgi retention signal, at the C-terminus and is not sorted to cell membrane, into the human FaDu hypopharyngeal cancer cell line that had severely impaired the expression of connexin during carcinogenesis. wtCx26 protein was trafficked to the cell membrane and formed gap junction, which successfully exerted cell-cell communication. On the other hand, the icCx26 protein was co-localised with a Golgi marker, as revealed by immunofluorescence, and thus was retained on the way to the cell membrane. While the forced expression of wtCx26 suppressed both cell proliferation in vitro and tumorigenicity in mice in vivo, icCx26 significantly enhanced both cell proliferation and tumorigenicity compared with the mock control clones, indicating that an excessive accumulation of connexin protein in intracellular domains should be involved in cancer progression and that restoration of proper subcellular sorting of connexin might be a therapeutic strategy to control HNSCC

    Plural Forms in Yoron-Ryukyuan and Address Nouns in Ryukyuan Languages

    Get PDF
    National Institute for Japanese Language and LinguisticsNational Institute for Japanese Language and LinguisticsNational Institute for Japanese Language and Linguistic

    Clinical Outcomes of Cetuximab and Paclitaxel after Progression on Immune Checkpoint Inhibitors in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma

    Get PDF
    Background and Objectives: In recent years, the effectiveness of chemotherapy after immune checkpoint inhibitor administration has attracted attention in various cancers, including head and neck cancers. However, individual assessments of the administered chemotherapy regimens are insufficient. This study aimed to evaluate the efficacy and safety of chemotherapy after immune checkpoint inhibitor administration in recurrent metastatic head and neck cancer by focusing on a single regimen. Materials and Methods: We retrospectively reviewed clinical and radiological data from the medical records of 18 patients with recurrent or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) who received systemic chemotherapy with weekly cetuximab and paclitaxel (Cmab + PTX) after progression following immune checkpoint inhibitor (ICI) therapy. The objective response rate (ORR) and disease control rate (DCR) were assessed using Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. Progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan-Meier method. Adverse events (AEs) were recorded using National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.0. Results: In all patients, the ORR, DCR, median PFS, and median OS were 44.4%, 72.2%, 3.8 months, and 9.6 months, respectively. Regarding AEs, three patients developed grade 3 neutropenia. Grade 3 anemia, paronychia, asthenia, and peripheral neuropathy were observed in one patient each. There were no treatment-related deaths. Conclusions: Cmab + PTX was shown to maintain high efficacy and acceptable safety for R/M HNSCC that progressed after ICI therapy. Further research is needed to establish optimal treatment sequences and drug combinations for recurrent R/M HNSCC

    Characterization of sulfur-compound metabolism underlying wax-ester fermentation in Euglena gracilis

    Get PDF
    Euglena gracilis is a microalga, which has been used as a model organism for decades. Recent technological advances have enabled mass cultivation of this species for industrial applications such as feedstock in nutritional foods and cosmetics. E. gracilis degrades its storage polysaccharide (paramylon) under hypoxic conditions for energy acquisition by an oxygen-independent process and accumulates high amount of wax-ester as a by-product. Using this sequence of reactions referred to as wax-ester fermentation, E. gracilis is studied for its application in biofuel production. Although the wax-ester production pathway is well characterized, little is known regarding the biochemical reactions underlying the main metabolic route, especially, the existence of an unknown sulfur-compound metabolism implied by the nasty odor generation accompanying the wax-ester fermentation. In this study, we show sulfur-metabolomics of E. gracilis in aerobic and hypoxic conditions, to reveal the biochemical reactions that occur during wax-ester synthesis. Our results helped us in identifying hydrogen sulfide (H2S) as the nasty odor-producing component in wax-ester fermentation. In addition, the results indicate that glutathione and protein degrades during hypoxia, whereas cysteine, methionine, and their metabolites increase in the cells. This indicates that this shift of abundance in sulfur compounds is the cause of H2S synthesis
    corecore