10 research outputs found

    Low Prevalence of Conjunctival Infection with Chlamydia trachomatis in a Treatment-NaĂŻve Trachoma-Endemic Region of the Solomon Islands

    Get PDF
    Trachoma is endemic in several Pacific Island states. Recent surveys across the Solomon Islands indicated that whilst trachomatous inflammation-follicular (TF) was present at levels warranting intervention, the prevalence of trachomatous trichiasis (TT) was low. We set out to determine the relationship between chlamydial infection and trachoma in this population. We conducted a population-based trachoma prevalence survey of 3674 individuals from two Solomon Islands provinces. Participants were examined for clinical signs of trachoma. Conjunctival swabs were collected from all children aged 1-9 years. We tested swabs for Chlamydia trachomatis (Ct) DNA using droplet digital PCR. Chlamydial DNA from positive swabs was enriched and sequenced for use in phylogenetic analysis. We observed a moderate prevalence of TF in children aged 1-9 years (n = 296/1135, 26.1%) but low prevalence of trachomatous inflammation-intense (TI) (n = 2/1135, 0.2%) and current Ct infection (n = 13/1002, 1.3%) in children aged 1-9 years, and TT in those aged 15+ years (n = 2/2061, 0.1%). Ten of 13 (76.9%) cases of infection were in persons with TF or TI (p = 0.0005). Sequence analysis of the Ct-positive samples yielded 5/13 (38%) complete (>95% coverage of reference) genome sequences, and 8/13 complete plasmid sequences. Complete sequences all aligned most closely to ocular serovar reference strains. The low prevalence of TT, TI and Ct infection that we observed are incongruent with the high proportion of children exhibiting signs of TF. TF is present at levels that apparently warrant intervention, but the scarcity of other signs of trachoma indicates the phenotype is mild and may not pose a significant public health threat. Our data suggest that, whilst conjunctival Ct infection appears to be present in the region, it is present at levels that are unlikely to be the dominant driving force for TF in the population. This could be one reason for the low prevalence of TT observed during the study

    Stock and stabilisation of organic carbon in tephra-buried volcanic soils: a case study in the northen EcuadorianAndes

    No full text
    Introduction : Major uncertainties in estimates of organic C trapped in soils and the mechanisms that stabilise it may impede accurate climate predictions for the future. Recent studies suggest that buried soil C represents a large and poorly constrained reservoir. In volcanic active regions, soils are repeatedly buried by tephra from explosive eruptions

    MDS-Related Anemia Is Associated with Impaired Quality of Life but Improvement Is Not Always Achieved by Increased Hemoglobin Level

    No full text
    Quality of life is impaired in MDS, but the role of hemoglobin level is unclear. To study the Hb–QoL correlation at diagnosis and 1 year later, patients filled out the EQ-5D questionnaire, assessing their mobility, self care, daily activities, pain/discomfort, and anxiety/depression, using scores of 0 (normal), 1 (mild/moderate), or 2 (poor). They also evaluated their health using a visual analogue scale, scoring from 0 (poor) to 100 (excellent). The anemia subgroups were: none/normal (Hb ≥ 12.5 g/dL), mild (10 ≤ Hb < 12.5), moderate (9 ≤ Hb < 10), severe (8 ≤ Hb < 9), or very severe (Hb < 8). LR-MDS patients (n = 127) and inpatient controls (n = 141) participated. The anemic patients had a poor QoL and the MDS patients had a lower QoL with a lower Hb. The controls had no QoL difference among the various anemia subgroups. In addition, the MDS QoL sharply decreased with an Hb of < 9. The MDS patients showed a wide QoL variability, i.e., different QoL scores in the same Hb subgroup, suggesting that other factors affect QoL (e.g., age and comorbidities). After 1 year (n = 61), the QoL was still poor for most MDS patients (including 27 patients with an increased Hb). In summary: (1) a poor QoL in MDS-anemia is non-linear, suggesting other influencing factors on QoL. (2) The sharp QoL drop with Hb < 9 g/dL challenges the transfusion Hb threshold. (3) The QoL in anemic MDS patients might differ from that in non-MDS patients. (4) Raising Hb, while recommended, does not guarantee an improved QoL

    Transcriptional diversity in specific synaptic gene sets discriminates cortical neuronal identity

    No full text
    Synapse diversity has been described from different perspectives, ranging from the specific neurotransmitters released, to their diverse biophysical properties and proteome profiles. However, synapse diversity at the transcriptional level has not been systematically identified across all synapse populations in the brain. To quantify and identify specific synaptic features of neuronal cell types we combined the SynGO (Synaptic Gene Ontology) database with single-cell RNA sequencing data of the mouse neocortex. We show that cell types can be discriminated by synaptic genes alone with the same power as all genes. The cell type discriminatory power is not equally distributed across synaptic genes as we could identify functional categories and synaptic compartments with greater cell type specific expression. Synaptic genes, and specific SynGO categories, belonged to three different types of gene modules: gradient expression over all cell types, gradient expression in selected cell types and cell class- or type-specific profiles. This data provides a deeper understanding of synapse diversity in the neocortex and identifies potential markers to selectively identify synapses from specific neuronal populations. © 2023, The Author(s).11Nsciescopu

    SynGO : An Evidence-Based, Expert-Curated Knowledge Base for the Synapse

    No full text
    Synapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders ("synaptopathies"). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes. SynGO annotations are exclusively based on published, expert-curated evidence. Using 2,922 annotations for 1,112 genes, we show that synaptic genes are exceptionally well conserved and less tolerant to mutations than other genes. Many SynGO terms are significantly overrepresented among gene variations associated with intelligence, educational attainment, ADHD, autism, and bipolar disorder and among de novo variants associated with neurodevelopmental disorders, including schizophrenia. SynGO is a public, universal reference for synapse research and an online analysis platform for interpretation of large-scale -omics data (https://syngoportal.org and http://geneontology.org)

    SynGO : An Evidence-Based, Expert-Curated Knowledge Base for the Synapse

    No full text
    Synapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders ("synaptopathies"). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes. SynGO annotations are exclusively based on published, expert-curated evidence. Using 2,922 annotations for 1,112 genes, we show that synaptic genes are exceptionally well conserved and less tolerant to mutations than other genes. Many SynGO terms are significantly overrepresented among gene variations associated with intelligence, educational attainment, ADHD, autism, and bipolar disorder and among de novo variants associated with neurodevelopmental disorders, including schizophrenia. SynGO is a public, universal reference for synapse research and an online analysis platform for interpretation of large-scale -omics data (https://syngoportal.org and http://geneontology.org)

    SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse

    No full text
    © 2019 Elsevier Inc.Synapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders (“synaptopathies”). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes. SynGO annotations are exclusively based on published, expert-curated evidence. Using 2,922 annotations for 1,112 genes, we show that synaptic genes are exceptionally well conserved and less tolerant to mutations than other genes. Many SynGO terms are significantly overrepresented among gene variations associated with intelligence, educational attainment, ADHD, autism, and bipolar disorder and among de novo variants associated with neurodevelopmental disorders, including schizophrenia. SynGO is a public, universal reference for synapse research and an online analysis platform for interpretation of large-scale -omics data (https://syngoportal.org and http://geneontology.org). The SynGO consortium presents a framework to annotate synaptic protein locations and functions and annotations for 1,112 synaptic genes based on published experimental evidence. SynGO reports exceptional features and disease associations for synaptic genes and provides an online data analysis platfor

    SynGO: an evidence-based, expert-curated knowledge base for the synapse

    Get PDF
    Synapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders (“synaptopathies”). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes. SynGO annotations are exclusively based on published, expert-curated evidence. Using 2,922 annotations for 1,112 genes, we show that synaptic genes are exceptionally well conserved and less tolerant to mutations than other genes. Many SynGO terms are significantly overrepresented among gene variations associated with intelligence, educational attainment, ADHD, autism, and bipolar disorder and among de novo variants associated with neurodevelopmental disorders, including schizophrenia. SynGO is a public, universal reference for synapse research and an online analysis platform for interpretation of large-scale -omics data (https://syngoportal.org and http://geneontology.org). The SynGO consortium presents a framework to annotate synaptic protein locations and functions and annotations for 1,112 synaptic genes based on published experimental evidence. SynGO reports exceptional features and disease associations for synaptic genes and provides an online data analysis platform.</p

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    No full text
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies.11Nsciescopu

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    No full text
    Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
    corecore