94 research outputs found

    Genetic and metabolic analyses of Candidatus Liberibacter solanacearum infecting carrot

    Get PDF
    Insect-vectored plant bacterial pathogens are gaining attention in recent years due to crop threatening outbreaks around the world. Candidatus Liberibacter spp. are infecting crops of different botanical families: Solanaceae, Rutaceae, and Apiaceae and are vectored by psyllids. Five genetic haplotypes (A-E) have been described thus far for the species Ca. Liberibacter solanacearum (Lso). Haplotypes A and B infecting solanaceous plants, haplotypes C-E infecting Apiaceae crops. To better understand the genetic basis that governs host specificity of Lso haplotypes, we sequenced the genome of haplotype D (LsoD). The LsoD genome size is 1.23 Mbp, with a GC content of 34.8% and 1167 predicted genes. Enzyme Commission (EC) numbers were assigned using the JGI software tool and 358 ECs were identified. ECs were mapped to metabolic pathways and compared with other sequenced Liberibacters. Phylogenetic analysis based on ECs and assigned metabolic pathways shows that LsoD groups together with Lso haplotypes (A and B) and is clearly different than Liberibacter species infecting citrus. Differences between LsoD and LsoA/B haplotypes were also found, hinting on host specific enzymes. The LsoD genome was also scanned to identify putatively secreted proteins using the SignalP tool. Thirty-one putative genes were identified, most of them with unknown function. While some genes have homologous in other Lso haplotypes, some were unique to LsoD. By quantitative-PCR we examined the expression of the putatively secreted proteins in the different hosts; the psyllid vector Bactericera trigonica, and carrot. Several genes with significantly higher expression levels in carrot compared with psyllid and vice versa were identified. These genes may have host specific functions. Overall, our analyses reveal genetic and metabolic elements differentiating the carrot-infecting Lso from Lso haplotypes infecting potato/tomato. Research is underway to identify the function of these elements

    That Sinking Feeling: People with Disabilities in Hospital Wards

    Get PDF
    This study examined the experiences of people with disabilities in general hospitals. Specifically, we identified and analysed the barriers and difficulties that people with disabilities face while hospitalised. Using qualitative methods, our findings were based on a combination of in-depth interviews and a focus group with twenty inpatients in total. Three major barriers to proper care arose from the transcripts: inaccessibility, practitioners’ lack of medical knowledge, and negative stereotypes. While some of the findings reinforce existing knowledge about barriers faced by people with disabilities, some address barriers that have not yet been investigated with qualitative instruments, such as lack of specific medical knowledge. In addition, the findings suggest the need to refer separately to physical and service accessibility, the latter including human service and communication. Practical recommendations include the need to upgrade healthcare accessibility regulations and ways to help people with disabilities receive equal health services during hospitalisation

    Assessing mucosal inflammation in a DSS-induced colitis mouse model by MR colonography

    Get PDF
    Inflammatory bowel disease (IBD) is characterized by a chronic flaring inflammation of the gastrointestinal tract. To determine disease activity, the inflammatory state of the colon should be assessed. Endoscopy in patients with IBD aids visualization of mucosal inflammation. However, because the mucosa is fragile, there is a significant risk of perforation. In addition, the technique is based on grading of the entire colon, which is highly operator-dependent. An improved, noninvasive, objective magnetic resonance imaging (MRI) technique will effectively assess pathologies in the small intestinal mucosa, more specifically, along the colon, and the bowel wall and surrounding structures. Here, dextran sodium sulfate polymer induced acute colitis in mice that was subsequently characterized by multisection magnetic resonance colonography. This study aimed to develop a noninvasive, objective, quantitative MRI technique for detecting mucosal inflammation in a dextran sodium sulfate–induced colitis mouse model. MRI results were correlated with endoscopic and histopathological evaluations.</jats:p

    Profiling molecular and behavioral circadian rhythms in the non-symbiotic sea anemone Nematostella vectensis

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 5 (2015): 11418, doi:10.1038/srep11418.Endogenous circadian clocks are poorly understood within early-diverging animal lineages. We have characterized circadian behavioral patterns and identified potential components of the circadian clock in the starlet sea anemone, Nematostella vectensis: a model cnidarian which lacks algal symbionts. Using automatic video tracking we showed that Nematostella exhibits rhythmic circadian locomotor activity, which is persistent in constant dark, shifted or disrupted by external dark/light cues and maintained the same rate at two different temperatures. This activity was inhibited by a casein kinase 1δ/ε inhibitor, suggesting a role for CK1 homologue(s) in Nematostella clock. Using high-throughput sequencing we profiled Nematostella transcriptomes over 48 hours under a light-dark cycle. We identified 180 Nematostella diurnally-oscillated transcripts and compared them with previously established databases of adult and larvae of the symbiotic coral Acropora millepora, revealing both shared homologues and unique rhythmic genes. Taken together, this study further establishes Nematostella as a non-symbiotic model organism to study circadian rhythms and increases our understanding about the fundamental elements of circadian regulation and their evolution within the Metazoa.This work was supported by the Israel-US Binational Science Foundation to OL and AMT (Award 2011187). Additional support was provided by the WHOI Early Career Scientist Award to AMT

    Dynamic assessment of the tear film muco-aqueous and lipid layers using a novel tear film imager (TFI)

    Get PDF
    Purpose The objective of the study was to assess a new technology, the tear film imager (TFI), which can dynamically image the muco-aqueous and lipid layers. Methods Prospective pilot case series of individuals with and without dry eye (DE). Two sequential images were obtained with the TFI. Measurements were assessed for reproducibility and compared with clinically derived DE metrics. Individuals were grouped into DE categories based on signs of DE. Results 49 patients participated in the study with a mean age of 58.8 years (SD 15.9) and a female majority (69%). Reproducibility of the muco-aqueous layer thickness (MALT) was excellent (r=0.88). MALT measurements significantly correlated with the Schirmer score (r=0.31). Lipid break up time (LBUT) as measured by the TFI significantly correlated with the clinical measure of tear break up time (TBUT) (r=0.73). MALT and LBUT were significantly thinner and shorter, respectively, in the DE groups (mild–moderate and severe) compared with the control group. When comparing TFI parameters to clinically assessed signs, sensitivity of the device was 87% and specificity was 88%. Conclusion The TFI is the first machine capable of reproducibly measuring muco-aqueous thickness in human subjects which correlates with Schirmer score. In parallel, it assesses other important aspects of tear film function which correlate with clinician assessed DE metrics

    Experimental Confirmation of the General Solution to the Multiple Phase Matching Problem

    Full text link
    We recently described a general solution to the phase matching problem that arises when one wishes to perform an arbitrary number of nonlinear optical processes in a single medium [PRL 95 (2005) 133901]. Here we outline in detail the implementation of the solution for a one dimensional photonic quasicrystal which acts as a simultaneous frequency doubler for three independent optical beams. We confirm this solution experimentally using an electric field poled KTiOPO4_4 crystal. In optimizing the device, we find - contrary to common practice - that simple duty cycles of 100% and 0% may yield the highest efficiencies, and show that our device is more efficient than a comparable device based on periodic quasi-phase-matching

    Trade-off between transcriptome plasticity and genome evolution in cephalopods

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here by permission of Cell Press for personal use, not for redistribution. The definitive version was published in Cell 169 (2017): 191-202, doi:10.1016/j.cell.2017.03.025.RNA editing, a post-transcriptional process, allows the diversification of proteomes beyond the genomic blueprint; however it is infrequently used among animals. Recent reports suggesting increased levels of RNA editing in squids thus raise the question of their nature and effects in these organisms. We here show that RNA editing is particularly common in behaviorally sophisticated coleoid cephalopods, with tens of thousands of evolutionarily conserved sites. Editing is enriched in the nervous system affecting molecules pertinent for excitability and neuronal morphology. The genomic sequence flanking editing sites is highly conserved, suggesting that the process confers a selective advantage. Due to the large number of sites, the surrounding conservation greatly reduces the number of mutations and genomic polymorphisms in protein coding regions. This trade-off between genome evolution and transcriptome plasticity highlights the importance of RNA recoding as a strategy for diversifying proteins, particularly those associated with neural function.NLB was supported by a post-doctoral scholarship from the Center for Nanoscience and Nanotechnology, Tel-Aviv University. The research of RU is supported by the Israel Science Foundation (772/13). The research of EYL was supported by the European Research Council (311257) and the Israel Science Foundation (1380/14). The research of JJCR was supported by the National Institutes of Health [1R0111223855, 1R01NS64259], the National Science Foundation (HRD- 1137725), and the Frank R. Lillie and Laura and Arthur Colwin Research Fellowships from the Marine Biological Laboratory in Woods Hole. The work of JJCR and EE was supported by grant No 094/2013 from the United States-Israel Binational Science Foundation (BSF).2018-04-0

    Genome Analysis of Haplotype D of Candidatus Liberibacter Solanacearum

    Get PDF
    Candidatus Liberibacter solanacearum (Lso) haplotype D (LsoD) is a suspected bacterial pathogen, spread by the phloem-feeding psyllid Bactericera trigonica Hodkinson and found to infect carrot plants throughout the Mediterranean. Haplotype D is one of six haplotypes of Lso that each have specific and overlapping host preferences, disease symptoms, and psyllid vectors. Genotyping of rRNA genes has allowed for tracking the haplotype diversity of Lso and genome sequencing of several haplotypes has been performed to advance a comprehensive understanding of Lso diseases and of the phylogenetic relationships among the haplotypes. To further pursue that aim we have sequenced the genome of LsoD from its psyllid vector and report here its draft genome. Genome-based single nucleotide polymorphism analysis indicates LsoD is most closely related to the A haplotype. Genomic features and the metabolic potential of LsoD are assessed in relation to Lso haplotypes A, B, and C, as well as the facultative strain Liberibacter crescens. We identify genes unique to haplotype D as well as putative secreted effectors that may play a role in disease characteristics specific to this haplotype of Lso

    Urbanization comprehensively impairs biological rhythms in coral holobionts

    Get PDF
    Coral reefs are in global decline due to climate change and anthropogenic influences (Hughes et al., Conservation Biology, 27: 261–269, 2013). Near coastal cities or other densely populated areas, coral reefs face a range of additional challenges. While considerable progress has been made in understanding coral responses to acute individual stressors (Dominoni et al., Nature Ecology & Evolution, 4: 502–511, 2020), the impacts of chronic exposure to varying combinations of sensory pollutants are largely unknown. To investigate the impacts of urban proximity on corals, we conducted a year-long in-natura study—incorporating sampling at diel, monthly, and seasonal time points—in which we compared corals from an urban area to corals from a proximal non-urban area. Here we reveal that despite appearing relatively healthy, natural biorhythms and environmental sensory systems were extensively disturbed in corals from the urban environment. Transcriptomic data indicated poor symbiont performance, disturbance to gametogenic cycles, and loss or shifted seasonality of vital biological processes. Altered seasonality patterns were also observed in the microbiomes of the urban coral population, signifying the impact of urbanization on the holobiont, rather than the coral host alone. These results should raise alarm regarding the largely unknown long-term impacts of sensory pollution on the resilience and survival of coral reefs close to coastal communities
    • …
    corecore