7 research outputs found

    A comparison of medical education in Germany and the United States: From applying to medical school to the beginnings of residency

    Get PDF
    Both Germany and the United States of America have a long tradition of science and medical excellence reaching back as far as the nineteenth century. The same tribute must be paid to the medical educational system in both countries. Despite significant initial similarities and cross-inspiration, the paths from enrolling in a medical university to graduating as a medical doctor in Germany and the US seem to have become much different. To fill a void in literature, the authors' objective therefore is to delineate both structures of medical education in an up-to-date review and examine their current differences and similarities. Recent medical publications, legal guidelines of governmental or official organizations, articles in media, as well as the authors' personal experiences are used as sources of this report.Tuition loans of over 200,000arenotuncommonforstudentsintheUSaftergraduatingfrommedicalschools,whichareoftenprivateinstitutions.InGermany,however,thevastmajorityofmedicaluniversitiesaretaxfundedand,forthisreason,freeoftuition.Significantdifferencesandsurprisinglymultiplesimilaritiesexistbetweenthesetwosystems,despiteonedependingongovernmentandtheotheronprivateorganizations.Germanycurrentlyemploysanintegratedmedicalcurriculumthattypicallybeginsrightafterhighschoolandconsistsofa2yearlongpreclinicalsegmentteachingbasicsciencesanda4yearclinicalsegmentleadingmedicalstudentstothepracticalaspectsofmedicine.Ontheotherhand,theUSeducationisatwostageprocess.AftersuccessfulcompletionofaBachelorsdegreeincollege,anAmericanstudentgoesthrougha4yearmedicalprogramencompassing2yearsofbasicscienceand2yearsofclinicaltraining.Inthisreview,wewilladdresssomeofthesesimilaritiesandmajordifferences.DeutschlandunddieVereinigtenStaatenvonAmerikahabenbeideeinelangeTraditionderNaturwissenschaftundmedizinischenExzellenz,diebisweitindasneunzehnteJahrhundertzuru¨ckreicht.DengleichenTributmussmandenmedizinischenAusbildungssystemenbeiderLa¨nderzollen.TrotzzuBeginnbedeutsamerA¨hnlichkeitenundgewisserQuerinspirationscheinensichdieWegevonderImmatrikulationaneinermedizinischenFakulta¨tbiszumStudienabschlussalsArztinDeutschlandunddenUSAgetrenntzuhaben.UmeineLu¨ckeinderFachliteraturzuschließen,istdasZielderAutoren,diebeidenStrukturendermedizinischenAusbildungmittelseineraktuellenU¨bersichtsschriftdarzustellenundderenUnterschiedeundGemeinsamkeitenzuuntersuchen.DieneustenmedizinischenPublikationen,verbindlicheRichtlinienvonamtlichenoderoffiziellenOrganisationen,ArtikelinderPresse,aberauchdieperso¨nlichenErfahrungenderAutorendienenalsQuellenfu¨rdieseArbeit.Studienkreditevonu¨ber200,000 are not uncommon for students in the US after graduating from medical schools, which are often private institutions. In Germany, however, the vast majority of medical universities are tax-funded and, for this reason, free of tuition. Significant differences and surprisingly multiple similarities exist between these two systems, despite one depending on government and the other on private organizations. Germany currently employs an integrated medical curriculum that typically begins right after high school and consists of a 2-year long pre-clinical segment teaching basic sciences and a 4-year clinical segment leading medical students to the practical aspects of medicine. On the other hand, the US education is a two-stage process. After successful completion of a Bachelor's degree in college, an American student goes through a 4-year medical program encompassing 2 years of basic science and 2 years of clinical training. In this review, we will address some of these similarities and major differences.Deutschland und die Vereinigten Staaten von Amerika haben beide eine lange Tradition der Naturwissenschaft und medizinischen Exzellenz, die bis weit in das neunzehnte Jahrhundert zurückreicht. Den gleichen Tribut muss man den medizinischen Ausbildungssystemen beider Länder zollen. Trotz zu Beginn bedeutsamer Ähnlichkeiten und gewisser Querinspiration scheinen sich die Wege von der Immatrikulation an einer medizinischen Fakultät bis zum Studienabschluss als Arzt in Deutschland und den USA getrennt zu haben. Um eine Lücke in der Fachliteratur zu schließen, ist das Ziel der Autoren, die beiden Strukturen der medizinischen Ausbildung mittels einer aktuellen Übersichtsschrift darzustellen und deren Unterschiede und Gemeinsamkeiten zu untersuchen. Die neusten medizinischen Publikationen, verbindliche Richtlinien von amtlichen oder offiziellen Organisationen, Artikel in der Presse, aber auch die persönlichen Erfahrungen der Autoren dienen als Quellen für diese Arbeit.Studienkredite von über 200.000 sind nicht selten für Studenten in den USA nach deren Abschluss an einer medizinischen Hochschule, die meist in privatem Eigentum ist. In Deutschland dagegen ist die große Mehrheit der Universitäten mit medizinischen Fakultäten in öffentlicher Hand, aus Steuern finanziert und deshalb frei von Studiengebühren. Signifikante Unterschiede doch auch überraschenderweise eine Reihe von Ähnlichkeiten existieren zwischen den Systemen der zwei Länder, obwohl eines von privaten Einrichtungen und das andere von staatlichen Hochschulen abhängig ist. Deutschland verwendet aktuell ein ganzheitliches medizinisches Curriculum, das klassischerweise direkt nach dem Abitur beginnt und aus zwei Jahren vorklinischer und vier Jahren klinischer Ausbildung besteht, wobei letzteres die Studenten an die praktischen Aspekte der Medizin heranführen soll. Auf der anderen Seite herrscht in den USA ein zweistufiger Ausbildungsprozess. Nach erfolgreichem Erreichen eines Bachelorgrads im College führt der Weg eines amerikanischen Studenten durch ein vierjähriges Medizinstudium, welches aus zwei Jahren Grundlagenlehre und zwei Jahren klinischer Ausbildung besteht. In dieser Überblicksarbeit werden wir uns mit einigen dieser Gemeinsamkeiten und Hauptunterschiede befassen

    A community effort in SARS-CoV-2 drug discovery.

    Get PDF
    peer reviewedThe COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against Covid-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find 'consensus compounds'. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.R-AGR-3826 - COVID19-14715687-CovScreen (01/06/2020 - 31/01/2021) - GLAAB Enric

    A global initiative for ecological and evolutionary hologenomics

    No full text
    The Earth Hologenome Initiative (EHI) is a global collaboration to generate and analyse hologenomic data from wild animals and associated microorganisms using standardised methodologies underpinned by open and inclusive research principles. Initially focused on vertebrates, it aims to re-examine ecological and evolutionary questions by studying host–microbiota interactions from a systemic perspective

    A community effort to discover small molecule SARS-CoV-2 inhibitors

    No full text
    The COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of a community effort, the “Billion molecules against Covid-19 challenge”, to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 potentially active molecules, which were subsequently ranked to find ‘consensus compounds’. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (Nsp12 domain), and (alpha) spike protein S. Overall, 27 potential inhibitors were experimentally confirmed by binding-, cleavage-, and/or viral suppression assays and are presented here. All results are freely available and can be taken further downstream without IP restrictions. Overall, we show the effectiveness of computational techniques, community efforts, and communication across research fields (i.e., protein expression and crystallography, in silico modeling, synthesis and biological assays) to accelerate the early phases of drug discovery

    NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics

    No full text
    Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    No full text
    Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data
    corecore