13 research outputs found

    Genome-Wide Analyses of Vocabulary Size in Infancy and Toddlerhood:Associations With Attention-Deficit/Hyperactivity Disorder, Literacy, and Cognition-Related Traits

    Get PDF
    Background: The number of words children produce (expressive vocabulary) and understand (receptive vocabulary) changes rapidly during early development, partially due to genetic factors. Here, we performed a meta–genome-wide association study of vocabulary acquisition and investigated polygenic overlap with literacy, cognition, developmental phenotypes, and neurodevelopmental conditions, including attention-deficit/hyperactivity disorder (ADHD). Methods: We studied 37,913 parent-reported vocabulary size measures (English, Dutch, Danish) for 17,298 children of European descent. Meta-analyses were performed for early-phase expressive (infancy, 15–18 months), late-phase expressive (toddlerhood, 24–38 months), and late-phase receptive (toddlerhood, 24–38 months) vocabulary. Subsequently, we estimated single nucleotide polymorphism–based heritability (SNP-h2) and genetic correlations (rg) and modeled underlying factor structures with multivariate models. Results: Early-life vocabulary size was modestly heritable (SNP-h2 = 0.08–0.24). Genetic overlap between infant expressive and toddler receptive vocabulary was negligible (rg = 0.07), although each measure was moderately related to toddler expressive vocabulary (rg = 0.69 and rg = 0.67, respectively), suggesting a multifactorial genetic architecture. Both infant and toddler expressive vocabulary were genetically linked to literacy (e.g., spelling: rg = 0.58 and rg = 0.79, respectively), underlining genetic similarity. However, a genetic association of early-life vocabulary with educational attainment and intelligence emerged only during toddlerhood (e.g., receptive vocabulary and intelligence: rg = 0.36). Increased ADHD risk was genetically associated with larger infant expressive vocabulary (rg = 0.23). Multivariate genetic models in the ALSPAC (Avon Longitudinal Study of Parents and Children) cohort confirmed this finding for ADHD symptoms (e.g., at age 13; rg = 0.54) but showed that the association effect reversed for toddler receptive vocabulary (rg = −0.74), highlighting developmental heterogeneity. Conclusions: The genetic architecture of early-life vocabulary changes during development, shaping polygenic association patterns with later-life ADHD, literacy, and cognition-related traits.</p

    Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.

    Get PDF
    Neðst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinn View/OpenLoss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ~150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.US National Institutes of Health (NIH) Training 5-T32-GM007748-33 Doris Duke Charitable Foundation 2006087 Fulbright Diabetes UK Fellowship BDA 11/0004348 Broad Institute from Pfizer, Inc. NIH U01 DK085501 U01 DK085524 U01 DK085545 U01 DK085584 Swedish Research Council Dnr 521-2010-3490 Dnr 349-2006-237 European Research Council (ERC) GENETARGET T2D GA269045 ENGAGE 2007-201413 CEED3 2008-223211 Sigrid Juselius Foundation Folkh lsan Research Foundation ERC AdG 293574 Research Council of Norway 197064/V50 KG Jebsen Foundation University of Bergen Western Norway Health Authority Lundbeck Foundation Novo Nordisk Foundation Wellcome Trust WT098017 WT064890 WT090532 WT090367 WT098381 Uppsala University Swedish Research Council and the Swedish Heart- Lung Foundation Academy of Finland 124243 102318 123885 139635 Finnish Heart Foundation Finnish Diabetes Foundation, Tekes 1510/31/06 Commission of the European Community HEALTH-F2-2007-201681 Ministry of Education and Culture of Finland European Commission Framework Programme 6 Integrated Project LSHM-CT-2004-005272 City of Kuopio and Social Insurance Institution of Finland Finnish Foundation for Cardiovascular Disease NIH/NIDDK U01-DK085545 National Heart, Lung, and Blood Institute (NHLBI) National Institute on Minority Health and Health Disparities N01 HC-95170 N01 HC-95171 N01 HC-95172 European Union Seventh Framework Programme, DIAPREPP Swedish Child Diabetes Foundation (Barndiabetesfonden) 5U01DK085526 DK088389 U54HG003067 R01DK072193 R01DK062370 Z01HG000024info:eu-repo/grantAgreement/EC/FP7/20201

    Precision gestational diabetes treatment: a systematic review and meta-analyses

    Get PDF

    Genotype-stratified treatment for monogenic insulin resistance: a systematic review

    Get PDF

    Structural and biophysical characterization of transcription factor HNF-1A as a tool to study MODY3 diabetes variants

    Get PDF
    Abstract Hepatocyte nuclear factor 1A (HNF-1A) is a transcription factor expressed in several embryonic and adult tissues, modulating the expression of numerous target genes. Pathogenic variants in the HNF1A gene are known to cause maturity-onset diabetes of the young 3 (MODY3 or HNF1A MODY), a disease characterized by dominant inheritance, age of onset before 25 to 35 years of age, and pancreatic β-cell dysfunction. A precise diagnosis can alter management of this disease, as insulin can be exchanged with sulfonylurea tablets and genetic counseling differs from polygenic forms of diabetes. Therefore, more knowledge on the mechanisms of HNF-1A function and the level of pathogenicity of the numerous HNF1A variants is required for precise diagnostics. Here, we structurally and biophysically characterized an HNF-1A protein containing both the DNA-binding domain and the dimerization domain, and determined the folding and DNA-binding capacity of two established MODY3 HNF-1A variant proteins (P112L, R263C) and one variant of unknown significance (N266S). All three variants showed reduced functionality compared to the WT protein. Furthermore, while the R263C and N266S variants displayed reduced binding to an HNF-1A target promoter, we found the P112L variant was unstable in vitro and in cells. Our results support and mechanistically explain disease causality for these investigated variants and present a novel approach for the dissection of structurally unstable and DNA-binding defective variants. This study indicates that structural and biochemical investigation of HNF-1A is a valuable tool in reliable variant classification needed for precision diabetes diagnostics and management

    Genome-Wide Analyses of Vocabulary Size in Infancy and Toddlerhood:Associations With Attention-Deficit/Hyperactivity Disorder, Literacy, and Cognition-Related Traits

    Get PDF
    Background: The number of words children produce (expressive vocabulary) and understand (receptive vocabulary) changes rapidly during early development, partially due to genetic factors. Here, we performed a meta–genome-wide association study of vocabulary acquisition and investigated polygenic overlap with literacy, cognition, developmental phenotypes, and neurodevelopmental conditions, including attention-deficit/hyperactivity disorder (ADHD). Methods: We studied 37,913 parent-reported vocabulary size measures (English, Dutch, Danish) for 17,298 children of European descent. Meta-analyses were performed for early-phase expressive (infancy, 15–18 months), late-phase expressive (toddlerhood, 24–38 months), and late-phase receptive (toddlerhood, 24–38 months) vocabulary. Subsequently, we estimated single nucleotide polymorphism–based heritability (SNP-h2) and genetic correlations (rg) and modeled underlying factor structures with multivariate models. Results: Early-life vocabulary size was modestly heritable (SNP-h2 = 0.08–0.24). Genetic overlap between infant expressive and toddler receptive vocabulary was negligible (rg = 0.07), although each measure was moderately related to toddler expressive vocabulary (rg = 0.69 and rg = 0.67, respectively), suggesting a multifactorial genetic architecture. Both infant and toddler expressive vocabulary were genetically linked to literacy (e.g., spelling: rg = 0.58 and rg = 0.79, respectively), underlining genetic similarity. However, a genetic association of early-life vocabulary with educational attainment and intelligence emerged only during toddlerhood (e.g., receptive vocabulary and intelligence: rg = 0.36). Increased ADHD risk was genetically associated with larger infant expressive vocabulary (rg = 0.23). Multivariate genetic models in the ALSPAC (Avon Longitudinal Study of Parents and Children) cohort confirmed this finding for ADHD symptoms (e.g., at age 13; rg = 0.54) but showed that the association effect reversed for toddler receptive vocabulary (rg = −0.74), highlighting developmental heterogeneity. Conclusions: The genetic architecture of early-life vocabulary changes during development, shaping polygenic association patterns with later-life ADHD, literacy, and cognition-related traits.</p

    Genome-wide association meta-analysis of childhood and adolescent internalizing symptoms

    No full text

    Genome-wide association meta-analysis of childhood and adolescent internalizing symptoms

    No full text
    Objective: To investigate the genetic architecture of internalizing symptoms in childhood and adolescence. Method: In 22 cohorts, multiple univariate genome-wide association studies (GWASs) were performed using repeated assessments of internalizing symptoms, in a total of 64,561 children and adolescents between 3 and 18 years of age. Results were aggregated in meta-analyses that accounted for sample overlap, first using all available data, and then using subsets of measurements grouped by rater, age, and instrument. Results: The meta-analysis of overall internalizing symptoms (INToverall) detected no genome-wide significant hits and showed low single nucleotide polymorphism (SNP) heritability (1.66%, 95% CI = 0.84-2.48%, neffective = 132,260). Stratified analyses indicated rater-based heterogeneity in genetic effects, with self-reported internalizing symptoms showing the highest heritability (5.63%, 95% CI = 3.08%-8.18%). The contribution of additive genetic effects on internalizing symptoms appeared to be stable over age, with overlapping estimates of SNP heritability from early childhood to adolescence. Genetic correlations were observed with adult anxiety, depression, and the well-being spectrum (|rg| > 0.70), as well as with insomnia, loneliness, attention-deficit/hyperactivity disorder, autism, and childhood aggression (range |rg| = 0.42-0.60), whereas there were no robust associations with schizophrenia, bipolar disorder, obsessive-compulsive disorder, or anorexia nervosa. Conclusion: Genetic correlations indicate that childhood and adolescent internalizing symptoms share substantial genetic vulnerabilities with adult internalizing disorders and other childhood psychiatric traits, which could partially explain both the persistence of internalizing symptoms over time and the high comorbidity among childhood psychiatric traits. Reducing phenotypic heterogeneity in childhood samples will be key in paving the way to future GWAS success

    Loss-of-function mutations in SLC30A8 protect against type 2 diabetes

    No full text
    corecore