12 research outputs found

    Structure of Chimpanzee Gut Microbiomes across Tropical Africa

    Get PDF
    Understanding variation in host-associated microbial communities is important given the relevance of microbiomes to host physiology and health. Using 560 fecal samples collected from wild chimpanzees (Pan troglodytes) across their range, we assessed how geography, genetics, climate, vegetation, and diet relate to gut microbial community structure (prokaryotes, eukaryotic parasites) at multiple spatial scales. We observed a high degree of regional specificity in the microbiome composition, which was associated with host genetics, available plant foods, and potentially with cultural differences in tool use, which affect diet. Genetic differences drove community composition at large scales, while vegetation and potentially tool use drove within-region differences, likely due to their influence on diet. Unlike industrialized human populations in the United States, where regional differences in the gut microbiome are undetectable, chimpanzee gut microbiomes are far more variable across space, suggesting that technological developments have decoupled humans from their local environments, obscuring regional differences that could have been important during human evolution. IMPORTANCE Gut microbial communities are drivers of primate physiology and health, but the factors that influence the gut microbiome in wild primate populations remain largely undetermined. We report data from a continent-wide survey of wild chimpanzee gut microbiota and highlight the effects of genetics, vegetation, and potentially even tool use at different spatial scales on the chimpanzee gut microbiome, including bacteria, archaea, and eukaryotic parasites. Microbial community dissimilarity was strongly correlated with chimpanzee population genetic dissimilarity, and vegetation composition and consumption of algae, honey, nuts, and termites were potentially associated with additional divergence in microbial communities between sampling sites. Our results suggest that host genetics, geography, and climate play a far stronger role in structuring the gut microbiome in chimpanzees than in humans

    Structure of Chimpanzee Gut Microbiomes across Tropical Africa.

    Get PDF
    Understanding variation in host-associated microbial communities is important given the relevance of microbiomes to host physiology and health. Using 560 fecal samples collected from wild chimpanzees (Pan troglodytes) across their range, we assessed how geography, genetics, climate, vegetation, and diet relate to gut microbial community structure (prokaryotes, eukaryotic parasites) at multiple spatial scales. We observed a high degree of regional specificity in the microbiome composition, which was associated with host genetics, available plant foods, and potentially with cultural differences in tool use, which affect diet. Genetic differences drove community composition at large scales, while vegetation and potentially tool use drove within-region differences, likely due to their influence on diet. Unlike industrialized human populations in the United States, where regional differences in the gut microbiome are undetectable, chimpanzee gut microbiomes are far more variable across space, suggesting that technological developments have decoupled humans from their local environments, obscuring regional differences that could have been important during human evolution. IMPORTANCE Gut microbial communities are drivers of primate physiology and health, but the factors that influence the gut microbiome in wild primate populations remain largely undetermined. We report data from a continent-wide survey of wild chimpanzee gut microbiota and highlight the effects of genetics, vegetation, and potentially even tool use at different spatial scales on the chimpanzee gut microbiome, including bacteria, archaea, and eukaryotic parasites. Microbial community dissimilarity was strongly correlated with chimpanzee population genetic dissimilarity, and vegetation composition and consumption of algae, honey, nuts, and termites were potentially associated with additional divergence in microbial communities between sampling sites. Our results suggest that host genetics, geography, and climate play a far stronger role in structuring the gut microbiome in chimpanzees than in humans

    Functional and phylogenetic diversity of an agricultural matrix avifauna: the role of habitat heterogeneity in Afrotropical farmland

    No full text
    Varied strategies to alleviate the loss of farmland biodiversity have been tested, yet there is still insufficient evidence supporting their effectiveness, especially when considering phylogenetic and functional diversity alongside traditional taxonomic diversity metrics. This conservation challenge is accentuated in the Afrotropics by the rapid agricultural expansion and intensification for the production of cash crops and by a comparative lack of research. In this study, we assessed how farming practices influence avian phylogenetic and functional diversity. We conducted point-count surveys to assess avian diversity in monocultures of tea and mixed crop farming systems surrounding the Nyungwe rainforest in south-west Rwanda, allowing us to investigate the drivers of avian diversity at farm level. Species composition was found to be moderately different between farm types, with mixed crop farms supporting higher phylogenetic diversity than tea plantations. There were no significant seasonal differences in species composition, functional or phylogenetic diversity. Overall, functional diversity did not differ between farm types, but the dispersion of trophic-related traits was significantly higher in mixed crop farms. Both functional and phylogenetic diversity were influenced by floristic diversity, vegetation height, tree number, and elevation to varying degrees. Our results also (i) highlight the role of farmland heterogeneity (e.g., crop species composition, height, and tree cover extent) in encouraging avian functional and phylogenetic diversity in the Afrotropics and (ii) indicate that the generally negative biodiversity impacts of monoculture agriculture can be partially alleviated by extensive agroforestry with an emphasis on indigenous tree species

    Assessing tropical forest restoration after fire using birds as indicators: An afrotropical case study

    No full text
    The necessity to restore rainforest habitats degraded by anthropogenic fires is widely recognized, however, research on restoration approaches has mainly centred on the recovery of forest structural complexity. There is insufficient evidence on the efficacy of restoration methods in the recovery of the faunal diversity and features linked to key ecosystem functions. We assessed the taxonomic diversity and functional trait structure of bird assemblages in undisturbed primary forest and fire-affected habitats undergoing natural regeneration, as well as areas of assisted natural regeneration, in Nyungwe National Park, Rwanda. We compiled bird occurrence data from point-count sampling, and obtained morphological traits for all species in our assemblages using measurements taken from wild birds and museum specimens. We found marked differences in species composition between primary forest habitats and regenerating forest, with similarity increasing over time since perturbation. Taxonomic diversity was higher in primary forest, and similar between the two restoration approaches. Functional diversity was lower in assisted naturally regenerated habitats, although separate analyses within dietary guilds revealed no differences across habitats. Among desired restoration outcomes, tree species diversity was the leading positive driver of avian species diversity, fern coverage exerted negative effects, while canopy cover had a positive but weak influence. Our findings underscore the importance of preventing anthropogenic fires in tropical rainforest since their impacts on ecological processes are not easily reversed, as shown by the lack of improvement in avian diversity metrics under assisted naturally regeneration in relation to natural regeneration. We stress the need to document both floral and faunal recovery in order to aid informed decision-making on restoration methods

    Functional and phylogenetic diversity of an agricultural matrix avifauna: The role of habitat heterogeneity in Afrotropical farmland

    Get PDF
    Varied strategies to alleviate the loss of farmland biodiversity have been tested, yet there is still insufficient evidence supporting their effectiveness, especially when considering phylogenetic and functional diversity alongside traditional taxonomic diversity metrics. This conservation challenge is accentuated in the Afrotropics by the rapid agricultural expansion and intensification for the production of cash crops and by a comparative lack of research. In this study, we assessed how farming practices influence avian phylogenetic and functional diversity. We conducted point-count surveys to assess avian diversity in monocultures of tea and mixed crop farming systems surrounding the Nyungwe rainforest in south-west Rwanda, allowing us to investigate the drivers of avian diversity at farm level. Species composition was found to be moderately different between farm types, with mixed crop farms supporting higher phylogenetic diversity than tea plantations. There were no significant seasonal differences in species composition, functional or phylogenetic diversity. Overall, functional diversity did not differ between farm types, but the dispersion of trophic-related traits was significantly higher in mixed crop farms. Both functional and phylogenetic diversity were influenced by floristic diversity, vegetation height, tree number, and elevation to varying degrees. Our results also (i) highlight the role of farmland heterogeneity (e.g., crop species composition, height, and tree cover extent) in encouraging avian functional and phylogenetic diversity in the Afrotropics and (ii) indicate that the generally negative biodiversity impacts of monoculture agriculture can be partially alleviated by extensive agroforestry with an emphasis on indigenous tree species

    Assessing tropical forest restoration after fire using birds as indicators: an Afrotropical case study

    Get PDF
    The necessity to restore rainforest habitats degraded by anthropogenic fires is widely recognized, however, research on restoration approaches has mainly centred on the recovery of forest structural complexity. There is insufficient evidence on the efficacy of restoration methods in the recovery of the faunal diversity and features linked to key ecosystem functions. We assessed the taxonomic diversity and functional trait structure of bird assemblages in undisturbed primary forest and fire-affected habitats undergoing natural regeneration, as well as areas of assisted natural regeneration, in Nyungwe National Park, Rwanda. We compiled bird occurrence data from point-count sampling, and obtained morphological traits for all species in our assemblages using measurements taken from wild birds and museum specimens. We found marked differences in species composition between primary forest habitats and regenerating forest, with similarity increasing over time since perturbation. Taxonomic diversity was higher in primary forest, and similar between the two restoration approaches. Functional diversity was lower in assisted naturally regenerated habitats, although separate analyses within dietary guilds revealed no differences across habitats. Among desired restoration outcomes, tree species diversity was the leading positive driver of avian species diversity, fern coverage exerted negative effects, while canopy cover had a positive but weak influence. Our findings underscore the importance of preventing anthropogenic fires in tropical rainforest since their impacts on ecological processes are not easily reversed, as shown by the lack of improvement in avian diversity metrics under assisted naturally regeneration in relation to natural regeneration. We stress the need to document both floral and faunal recovery in order to aid informed decision-making on restoration methods

    Effects of land-use change on avian taxonomic, functional and phylogenetic diversity in a tropical montane rainforest

    Get PDF
    Aim Although land use change is a leading cause of biodiversity loss worldwide, there is scant information on the extent to which it has affected the structure and composition of bird communities in the Afrotropical region. This study aimed to quantify the effects of habitat transformation on taxonomic, functional and phylogenetic diversity in Afrotropical bird communities. Location Nyungwe landscape, a montane rainforest with adjoining farmland in south-west Rwanda. Methods Data on bird occurrence, abundance and functional traits were collected in 2017/18 using point counts. We also collected data on habitat and morphological traits for all bird species recorded. We quantified bird diversity using a range of metrics, including the inverse Simpson index, functional dispersion and the standardized effect size of mean nearest taxon distance. Results In comparison with primary forest areas, even low levels of land use change altered species composition and reduced species diversity. Although overall functional diversity and phylogenetic diversity were similar across land use types, we found a significant contraction of trophic and locomotory trait structures of bird communities in restored areas and cultivated areas, respectively. Soil moisture, elevation and lower vegetation height were major factors influencing taxonomic, functional and phylogenetic dimensions of bird communities, although their effects varied across these dimensions. Main conclusions The sensitivity of forest species to minor habitat disturbance emphasizes the value of conserving primary vegetation. Long-term conservation of bird communities in Afromontane ecosystems requires halting wide-scale destruction of primary forest, promoting vegetation heterogeneity in the ecological restoration of degraded habitats and adopting wildlife-friendly agricultural practices. Our results suggest that monitoring and conservation in these landscapes can be refined using taxonomic, functional and phylogenetic diversity metrics to provide complementary information about the current and likely future impacts of land use change
    corecore