320 research outputs found

    Groupoids and an index theorem for conical pseudo-manifolds

    Get PDF
    We define an analytical index map and a topological index map for conical pseudomanifolds. These constructions generalize the analogous constructions used by Atiyah and Singer in the proof of their topological index theorem for a smooth, compact manifold MM. A main ingredient is a non-commutative algebra that plays in our setting the role of C0(TM)C_0(T^*M). We prove a Thom isomorphism between non-commutative algebras which gives a new example of wrong way functoriality in KK-theory. We then give a new proof of the Atiyah-Singer index theorem using deformation groupoids and show how it generalizes to conical pseudomanifolds. We thus prove a topological index theorem for conical pseudomanifolds

    Spin injection in Silicon at zero magnetic field

    Get PDF
    In this letter, we show efficient electrical spin injection into a SiGe based \textit{p-i-n} light emitting diode from the remanent state of a perpendicularly magnetized ferromagnetic contact. Electron spin injection is carried out through an alumina tunnel barrier from a Co/Pt thin film exhibiting a strong out-of-plane anisotropy. The electrons spin polarization is then analysed through the circular polarization of emitted light. All the light polarization measurements are performed without an external applied magnetic field \textit{i.e.} in remanent magnetic states. The light polarization as a function of the magnetic field closely traces the out-of-plane magnetization of the Co/Pt injector. We could achieve a circular polarization degree of the emitted light of 3 % at 5 K. Moreover this light polarization remains almost constant at least up to 200 K.Comment: accepted in AP

    Muon capture on light nuclei

    Full text link
    This work investigates the muon capture reactions 2H(\mu^-,\nu_\mu)nn and 3He(\mu^-,\nu_\mu)3H and the contribution to their total capture rates arising from the axial two-body currents obtained imposing the partially-conserved-axial-current (PCAC) hypothesis. The initial and final A=2 and 3 nuclear wave functions are obtained from the Argonne v_{18} two-nucleon potential, in combination with the Urbana IX three-nucleon potential in the case of A=3. The weak current consists of vector and axial components derived in chiral effective field theory. The low-energy constant entering the vector (axial) component is determined by reproducting the isovector combination of the trinucleon magnetic moment (Gamow-Teller matrix element of tritium beta-decay). The total capture rates are 393.1(8) s^{-1} for A=2 and 1488(9) s^{-1} for A=3, where the uncertainties arise from the adopted fitting procedure.Comment: 6 pages, submitted to Few-Body Sys

    The topological dimension of type I C*-algebras

    Full text link
    While there is only one natural dimension concept for separable, metric spaces, the theory of dimension in noncommutative topology ramifies into different important concepts. To accommodate this, we introduce the abstract notion of a noncommutative dimension theory by proposing a natural set of axioms. These axioms are inspired by properties of commutative dimension theory, and they are for instance satisfied by the real and stable rank, the decomposition rank and the nuclear dimension. We add another theory to this list by showing that the topological dimension, as introduced by Brown and Pedersen, is a noncommutative dimension theory of type I C*-algebras. We also give estimates of the real and stable rank of a type I C*-algebra in terms of its topological dimension.Comment: 20 pages; minor correction

    The Dirac operator on generalized Taub-NUT spaces

    Full text link
    We find sufficient conditions for the absence of harmonic L2L^2 spinors on spin manifolds constructed as cone bundles over a compact K\"ahler base. These conditions are fulfilled for certain perturbations of the Euclidean metric, and also for the generalized Taub-NUT metrics of Iwai-Katayama, thus proving a conjecture of Vi\csinescu and the second author.Comment: Final version, 16 page

    Regularity for eigenfunctions of Schr\"odinger operators

    Full text link
    We prove a regularity result in weighted Sobolev spaces (or Babuska--Kondratiev spaces) for the eigenfunctions of a Schr\"odinger operator. More precisely, let K_{a}^{m}(\mathbb{R}^{3N}) be the weighted Sobolev space obtained by blowing up the set of singular points of the Coulomb type potential V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N} \frac{c_{ij}}{|x_i-x_j|}, x in \mathbb{R}^{3N}, b_j, c_{ij} in \mathbb{R}. If u in L^2(\mathbb{R}^{3N}) satisfies (-\Delta + V) u = \lambda u in distribution sense, then u belongs to K_{a}^{m} for all m \in \mathbb{Z}_+ and all a \le 0. Our result extends to the case when b_j and c_{ij} are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a<3/2.Comment: to appear in Lett. Math. Phy

    Regularity of the eta function on manifolds with cusps

    Full text link
    On a spin manifold with conformal cusps, we prove under an invertibility condition at infinity that the eta function of the twisted Dirac operator has at most simple poles and is regular at the origin. For hyperbolic manifolds of finite volume, the eta function of the Dirac operator twisted by any homogeneous vector bundle is shown to be entire.Comment: 22 pages, 2 figure

    Slow Magnetic Relaxation of Dy Adatoms with In-Plane Magnetic Anisotropy on a Two-Dimensional Electron Gas

    Get PDF
    We report on the magnetic properties of Dy atoms adsorbed on the (001) surface of SrTiO3. X-ray magnetic circular dichroism reveals slow relaxation of the Dy magnetization on a time scale of about 800 s at 2.5 K, unusually associated with an easy-plane magnetic anisotropy. We attribute these properties to Dy atoms occupying hollow adsorption sites on the TiO2-terminated surface. Conversely, Ho atoms adsorbed on the same surface show paramagnetic behavior down to 2.5 K. With the help of atomic multiplet simulations and first-principles calculations, we establish that Dy populates also the top-O and bridge sites on the coexisting SrO-terminated surface. A simple magnetization relaxation model predicts these two sites to have an even longer magnetization lifetime than the hollow site. Moreover, the adsorption of Dy on the insulating SrTiO3 crystal leads, regardless of the surface termination, to the formation of a spin-polarized two-dimensional electron gas of Ti 3dxy character, together with an antiferromagnetic Dy-Ti coupling. Our findings support the feasibility of tuning the magnetic properties of the rare-earth atoms by acting on the substrate electronic gas with electric fields.We acknowldege funding from the National Research Council (CNR) within the CNR/CAS Cooperative Programme project "Advanced characterization methods for the study of rare-earth single-ion magnets on oxide substrates", from the Czech Academy of Sciences (Mobility Plus Project No. CNR-19-03), and from the Swiss National Science Foundation (200020_176932 and 200021_175941). ICN2 was funded by the CERCA Programme/Generalitat de Catalunya and supported by the Spanish Ministry of Economy and Competitiveness, MINECO (grant nos. SEV-2017-0706 and PID2019-107338RB-C65/AEI/10.13039/501100011033). IMDEA Nanociencia acknowledges support from the Severo Ochoa Programme for Centres of Excellence in R&D (MINECO, grant SEV-2016-0686).Peer reviewe

    Equivalence of Conventionally-Derived and Parthenote-Derived Human Embryonic Stem Cells

    Get PDF
    As human embryonic stem cell (hESC) lines can be derived via multiple means, it is important to determine particular characteristics of individual lines that may dictate the applications to which they are best suited. The objective of this work was to determine points of equivalence and differences between conventionally-derived hESC and parthenote-derived hESC lines (phESC) in the undifferentiated state and during neural differentiation.hESC and phESC were exposed to the same expansion conditions and subsequent neural and retinal pigmented epithelium (RPE) differentiation protocols. Growth rates and gross morphology were recorded during expansion. RTPCR for developmentally relevant genes and global DNA methylation profiling were used to compare gene expression and epigenetic characteristics. Parthenote lines proliferated more slowly than conventional hESC lines and yielded lower quantities of less mature differentiated cells in a neural progenitor cell (NPC) differentiation protocol. However, the cell lines performed similarly in a RPE differentiation protocol. The DNA methylation analysis showed similar general profiles, but the two cell types differed in methylation of imprinted genes. There were no major differences in gene expression between the lines before differentiation, but when differentiated into NPCs, the two cell types differed in expression of extracellular matrix (ECM) genes.These data show that hESC and phESC are similar in the undifferentiated state, and both cell types are capable of differentiation along neural lineages. The differences between the cell types, in proliferation and extent of differentiation, may be linked, in part, to the observed differences in ECM synthesis and methylation of imprinted genes
    corecore