8 research outputs found

    Destruxin E Decreases Beta-Amyloid Generation by Reducing Colocalization of Beta-Amyloid-Cleaving Enzyme 1 and Beta-Amyloid Protein Precursor

    Get PDF
    Alzheimer-disease-associated beta-amyloid (A beta) is produced by sequential endoproteolysis of beta-amyloid protein precursor (beta APP): the extracellular portion is shed by cleavage in the juxtamembrane region by beta-amyloid-cleaving enzyme (BACE)/beta-secretase, after which it is cleaved by presenilin (PS)/gamma-secretase near the middle of the transmembrane domain. Thus, inhibition of either of the secretases reduces A beta generation and is a fundamental strategy for the development of drugs to prevent Alzheimer disease. However, it is not clear how small compounds reduce A beta production without inhibition of the secretases. Such compounds are expected to avoid some of the side effects of secretase inhibitors. Here, we report that destruxin E (Dx-E), a natural cyclic hexadepsipeptide, reduces A beta generation without affecting BACE or PS/gamma-secretase activity. In agreement with this, Dx-E did not inhibit Notch signaling. We found that Dx-E decreases colocalization of BACE1 and beta APP, which reduces beta-cleavage of beta APP. Therefore, the data demonstrate that Dx-E represents a novel A beta-reducing process which could have fewer side effects than secretase inhibitors. Copyright (C) 2009 S. Karger AG, Base

    Deglycosylated anti-amyloid beta antibodies induce amyloid beta sequestration with reduced microglial phagocytosis and cytokine release

    No full text
    Accumulation of amyloid beta (Abeta) is a pathological hallmark of Alzheimer\u27s disease, and lowering Abeta is a promising therapeutic approach. Intact anti-Abeta antibodies reduce brain Abeta through two pathways: enhanced microglial phagocytosis and Abeta transfer from the brain to the periphery (Abeta sequestration). While activation of microglia, which is essential for microglial phagocytosis, is necessarily accompanied by undesired neuroinflammatory events, the capacity for sequestration does not seem to be linked to such effects. We and other groups have found that simple Abeta binding agents are sufficient to reduce brain Abeta through the sequestration pathway. In this study, we aimed to eliminate potentially deleterious immune activation from antibodies without affecting the ability to induce sequestration. The glycan portion of immunoglobulin is critically involved in interactions with immune effectors including the Fc receptor and complement c1q; deglycosylation eliminates these interactions, while antigen (Abeta)-binding affinity is maintained. In this study, we investigated whether deglycosylated anti-Abeta antibodies reduce microglial phagocytosis and neuroinflammation without altering the capacity to induce Abeta sequestration. Deglycosylated antibodies maintained Abeta binding affinity. Deglycosylated antibodies did not enhance Abeta phagocytosis or cytokine release in primary cultured microglia, whereas intact antibodies did so significantly. Intravenous injection of deglycosylated antibodies elevated plasma Abeta levels and induced Abeta sequestration to a similar or greater degree compared with intact antibodies in an Alzheimer\u27s transgenic mouse model without or with Abeta plaque pathology. We conclude that deglycosylated antibodies effectively induced Abeta sequestration without provoking neuroinflammation; thus, these deglycosylated antibodies may be optimal for sequestration therapy for Alzheimer\u27s disease

    Semagacestat Is a Pseudo-Inhibitor of γ-Secretase

    No full text
    γ-secretase inhibitors (GSI) are drugs developed to decrease amyloid-β peptide (Aβ) production by inhibiting intramembranous cleavage of β-amyloid protein precursor (βAPP). However, a large phase 3 trial of semagacestat, a potential non-transition state analog (non-TSA) GSI, in patients with Alzheimer’s disease (AD) was terminated due to unexpected aggravation of cognitive deficits and side effects. Here, we show that some semagacestat effects are clearly different from a phenotype caused by a loss of function of presenilins, core proteins in the γ-secretase complex. Semagacestat increases intracellular byproduct peptides, produced along with Aβ through serial γ-cleavage of βAPP, as well as intracellular long Aβ species, in cell-based and in vivo studies of AD model mice. Other potential non-TSA GSIs, but not L685,458, a TSA GSI, have similar effects. Furthermore, semagacestat inhibits release of de novo intramembranous γ-byproducts to the soluble space. Thus, semagacestat is a pseudo-GSI, and therefore, the semagacestat clinical trial did not truly test the Aβ hypothesis

    Regulation of Notch Signaling by Dynamic Changes in the Precision of S3 Cleavage of Notch-1▿ †

    No full text
    Intramembrane proteolysis by presenilin-dependent γ-secretase produces the Notch intracellular cytoplasmic domain (NCID) and Alzheimer disease-associated amyloid-β. Here, we show that upon Notch signaling the intracellular domain of Notch-1 is cleaved into two distinct types of NICD species due to diversity in the site of S3 cleavage. Consistent with the N-end rule, the S3-V cleavage produces stable NICD with Val at the N terminus, whereas the S3-S/S3-L cleavage generates unstable NICD with Ser/Leu at the N terminus. Moreover, intracellular Notch signal transmission with unstable NICDs is much weaker than that with stable NICD. Importantly, the extent of endocytosis in target cells affects the relative production ratio of the two types of NICD, which changes in parallel with Notch signaling. Surprisingly, substantial amounts of unstable NICD species are generated from the Val→Gly and the Lys→Arg mutants, which have been reported to decrease S3 cleavage efficiency in cultured cells. Thus, we suggest that the existence of two distinct types of NICD points to a novel aspect of the intracellular signaling and that changes in the precision of S3 cleavage play an important role in the process of conversion from extracellular to intracellular Notch signaling
    corecore