1,928 research outputs found

    Redshift-space Distortions of the Power Spectrum of Cosmological Objects on a Light Cone : Explicit Formulations and Theoretical Implications

    Get PDF
    We examine the effects of the linear and the cosmological redshift-space distortions on the power spectrum of cosmological objects on a light cone. We develop theoretical formulae for the power spectrum in linear theory of density perturbations in a rigorous manner starting from first principle corresponding to Fourier analysis. Approximate formulae, which are useful properly to incorporate the redshift-space distortion effects into the power spectrum are derived, and the validity is examined. Applying our formulae to galaxy and quasar samples which roughly match the SDSS survey, we will show how the redshift-space distortions distort the power spectrum on the light cone quantitatively.Comment: 30 pages, Accepted for publication in the Astrophysical Journal Supplement Serie

    Stoner gap in the superconducting ferromagnet UGe2

    Full text link
    We report the temperature (TT) dependence of ferromagnetic Bragg peak intensities and dc magnetization of the superconducting ferromagnet UGe2 under pressure (PP). We have found that the low-TT behavior of the uniform magnetization can be explained by a conventional Stoner model. A functional analysis of the data produces the following results: The ferromagnetic state below a critical pressure can be understood as the perfectly polarized state, in which heavy quasiparticles occupy only majority spin bands. A Stoner gap Δ(P)\Delta(P) decreases monotonically with increasing pressure and increases linearly with magnetic field. We show that the present analysis based on the Stoner model is justified by a consistency check, i.e., comparison of density of states at the Fermi energy deduced from the analysis with observed electronic specific heat coeffieients. We also argue the influence of the ferromagnetism on the superconductivity.Comment: 5 pages, 4 figures. to be published in Phys. Rev.

    The BTZ black hole with a time-dependent boundary

    Full text link
    The non-rotating BTZ solution is expressed in terms of coordinates that allow for an arbitrary time-dependent scale factor in the boundary metric. We provide explicit expressions for the coordinate transformation that generates this form of the metric, and determine the regions of the complete Penrose diagram that are convered by our parametrization. This construction is utilized in order to compute the stress-energy tensor of the dual CFT on a time-dependent background. We study in detail the expansion of radial null geodesic congruences in the BTZ background for various forms of the scale factor of the boundary metric. We also discuss the relevance of our construction for the holographic calculation of the entanglement entropy of the dual CFT on time-dependent backgrounds.Comment: 14 pages, 13 figures, title changed in journal, conformal diagrams added, references added, final version to appear in Classical and Quantum Gravit

    The cosmological light-cone effect on the power spectrum of galaxies and quasars in wide-field redshift surveys

    Get PDF
    We examine observational consequences of the cosmological light-cone effect on the power spectrum of the distribution of galaxies and quasars from upcoming redshift surveys. First we derive an expression for the power spectrum of cosmological objects in real space on a light cone, PR,linLC(k)P^{\rm LC}_{\rm R,lin}(k), which is exact in linear theory of density perturbations. Next we incorporate corrections for the nonlinear density evolution and redshift-space distortion in the formula in a phenomenological manner which is consistent with recent numerical simulations. On the basis of this formula, we predict the power spectrum of galaxies and quasars on the light cone for future redshift surveys taking account of the selection function properly. We demonstrate that this formula provides a reliable and useful method to compute the power spectrum on the light cone given an evolution model of bias.Comment: 18 pages, 3 figures, to be published in the Astrophysical Journa

    Nonperturbative aspects of ABJM theory

    Full text link
    Using the matrix model which calculates the exact free energy of ABJM theory on S^3 we study non-perturbative effects in the large N expansion of this model, i.e., in the genus expansion of type IIA string theory on AdS4xCP^3. We propose a general prescription to extract spacetime instanton actions from general matrix models, in terms of period integrals of the spectral curve, and we use it to determine them explicitly in the ABJM matrix model, as exact functions of the 't Hooft coupling. We confirm numerically that these instantons control the asymptotic growth of the genus expansion. Furthermore, we find that the dominant instanton action at strong coupling determined in this way exactly matches the action of an Euclidean D2-brane instanton wrapping RP^3.Comment: 26 pages, 14 figures. v2: small corrections, final version published in JHE

    Holographic Studies of Entanglement Entropy in Superconductors

    Full text link
    We present the results of our studies of the entanglement entropy of a superconducting system described holographically as a fully back-reacted gravity system, with a stable ground state. We use the holographic prescription for the entanglement entropy. We uncover the behavior of the entropy across the superconducting phase transition, showing the reorganization of the degrees of freedom of the system. We exhibit the behaviour of the entanglement entropy from the superconducting transition all the way down to the ground state at T=0. In some cases, we also observe a novel transition in the entanglement entropy at intermediate temperatures, resulting from the detection of an additional length scale.Comment: 21 pages, 14 figures. v2:Clarified some remarks concerning stability. v3: Updated to the version that appears in JHE

    An exact formula for the radiation of a moving quark in N=4 super Yang Mills

    Get PDF
    We derive an exact formula for the cusp anomalous dimension at small angles. This is done by relating the latter to the computation of certain 1/8 BPS Wilson loops which was performed by supersymmetric localization. This function of the coupling also determines the power emitted by a moving quark in N=4 super Yang Mills, as well as the coefficient of the two point function of the displacement operator on the Wilson loop. By a similar method we compute the near BPS expansion of the generalized cusp anomalous dimension.Comment: 22 pages, 5 figures. v2: references added, typos correcte
    corecore