176 research outputs found

    A new method of inducing selective brain hypothermia with saline perfusion into the subdural space: effects on transient cerebral ischemia in cats.

    Get PDF
    In this study, we tested brain surface cooling as a new method of inducing selective brain hypothermia, and evaluated its effects on focal cerebral ischemia using a cat model of transient middle cerebral artery (MCA) occlusion. Cats underwent 1 h of MCA occlusion followed by 5 h of reperfusion. Brain surface cooling was induced for 4 h during and after MCA occlusion in the hypothermia group, but not in the normothermia group. Brain surface cooling was performed using saline perfusion into the subdural space. Rectal temperature, brain surface temperature, and deep brain temperature were monitored, and regional cerebral blood flow (rCBF) and somatosensory evoked potential (SEP) were serially measured. After 5 h of reperfusion, water content was also measured. Although the rectal temperature was maintained at about 37 degrees C, the brain surface temperature decreased rapidly to 33 degrees C and was maintained at that temperature. For 3 h following reperfusion, the rCBF was lower in the hypothermia group than in the normothermia group. At 4 and 5 h after reperfusion, the recovery of SEP amplitude was significantly more enhanced in the hypothermia group than in the normothermia group. In the gray matter, the water content was significantly more diminished in the hypothermia group than in the normothermia group. These results demonstrate that our method is useful for protecting the ischemic brain from a transient MCA occlusion. This method may be adapted for neurological surgery.</p

    ADAMTS13 gene deletion enhances plasma high-mobility group box1 elevation and neuroinflammation in brain ischemia-reperfusion injury

    Get PDF
    Highly adhesive glycoprotein von Willebrand factor (VWF) multimer induces platelet aggregation and leukocyte tethering or extravasation on the injured vascular wall, contributing to microvascular plugging and inflammation in brain ischemia-reperfusion. A disintegrin and metalloproteinase with thrombospondin type-1 motifs 13 (ADAMTS13) cleaves the VWF multimer strand and reduces its prothrombotic and proinflammatory functions. Although ADAMTS13 deficiency is known to amplify post-ischemic cerebral hypoperfusion, there is no report available on the effect of ADAMTS13 on inflammation after brain ischemia. We investigated if ADAMTS13 deficiency intensifies the increase of extracellular HMGB1, a hallmark of post-stroke inflammation, and exacerbates brain injury after ischemia-reperfusion. ADAMTS13 gene knockout (KO) and wild-type (WT) mice were subjected to 30-min middle cerebral artery occlusion (MCAO) and 23.5-h reperfusion under continuous monitoring of regional cerebral blood flow (rCBF). The infarct volume, plasma high-mobility group box1 (HMGB1) level, and immunoreactivity of the ischemic cerebral cortical tissue (double immunofluorescent labeling) against HMGB1/NeuN (neuron-specific nuclear protein) or HMGB1/MPO (myeloperoxidase) were estimated 24h after MCAO. ADAMTS13KO mice had larger brain infarcts compared with WT 24h after MCAO (p<0.05). The rCBF during reperfusion decreased more in ADAMTS13KO mice. The plasma HMGB1 increased more in ADAMTS13KO mice than in WT after ischemia-reperfusion (p<0.05). Brain ischemia induced more prominent activation of inflammatory cells co-expressing HMGB1 and MPO and more marked neuronal death in the cortical ischemic penumbra of ADAMTS13KO mice. ADAMTS13 deficiency may enhance systemic and brain inflammation associated with HMGB1 neurotoxicity, and aggravate brain damage in mice after brief focal ischemia. We hypothesize that ADAMTS13 protects brain from ischemia-reperfusion injury by regulating VWF-dependent inflammation as well as microvascular pluggin

    Design report of the KISS-II facility for exploring the origin of uranium

    Full text link
    One of the critical longstanding issues in nuclear physics is the origin of the heavy elements such as platinum and uranium. The r-process hypothesis is generally supported as the process through which heavy elements are formed via explosive rapid neutron capture. Many of the nuclei involved in heavy-element synthesis are unidentified, short-lived, neutron-rich nuclei, and experimental data on their masses, half-lives, excited states, decay modes, and reaction rates with neutron etc., are incredibly scarce. The ultimate goal is to understand the origin of uranium. The nuclei along the pathway to uranium in the r-process are in "Terra Incognita". In principle, as many of these nuclides have more neutrons than 238U, this region is inaccessible via the in-flight fragmentation reactions and in-flight fission reactions used at the present major facilities worldwide. Therefore, the multi-nucleon transfer (MNT) reaction, which has been studied at the KEK Isotope Separation System (KISS), is attracting attention. However, in contrast to in-flight fission and fragmentation, the nuclei produced by the MNT reaction have characteristic kinematics with broad angular distribution and relatively low energies which makes them non-amenable to in-flight separation techniques. KISS-II would be the first facility to effectively connect production, separation, and analysis of nuclides along the r-process path leading to uranium. This will be accomplished by the use of a large solenoid to collect MNT products while rejecting the intense primary beam, a large helium gas catcher to thermalize the MNT products, and an MRTOF mass spectrograph to perform mass analysis and isobaric purification of subsequent spectroscopic studies. The facility will finally allow us to explore the neutron-rich nuclides in this Terra Incognita.Comment: Editors: Yutaka Watanabe and Yoshikazu Hirayam

    Model experiment of magnetic field amplification in laser-produced plasmas via the Richtmyer-Meshkov instability

    Get PDF
    A model experiment of magnetic field amplification (MFA) via the Richtmyer-Meshkov instability (RMI) in supernova remnants (SNRs) was performed using a high-power laser. In order to account for very-fast acceleration of cosmic rays observed in SNRs, it is considered that the magnetic field has to be amplified by orders of magnitude from its background level. A possible mechanism for the MFA in SNRs is stretching and mixing of the magnetic field via the RMI when shock waves pass through dense molecular clouds in interstellar media. In order to model the astrophysical phenomenon in laboratories, there are three necessary factors for the RMI to be operative: a shock wave, an external magnetic field, and density inhomogeneity. By irradiating a double-foil target with several laser beams with focal spot displacement under influence of an external magnetic field, shock waves were excited and passed through the density inhomogeneity. Radiative hydrodynamic simulations show that the RMI evolves as the density inhomogeneity is shocked, resulting in higher MFA

    A Homozygous Mutation in UGT1A1 Exon 5 May Be Responsible for Persistent Hyperbilirubinemia in a Japanese Girl with Gilbert’s Syndrome

    Get PDF
    The UGT1A1 gene encodes a responsible enzyme, UDP-glucuronosyltransferase1A1, for bilirubin metabolism. Many mutations have already been identified in patients with inherited disorders with hyperbilirubinemia, Crigler-Najjar syndrome and Gilbert’s syndrome. In this study, we identified a UGT1A1 mutation in an 8-year-old Japanese girl with persistent hyperbilirubinemia who was clinically diagnosed as having Gilbert’s syndrome. For the mutational analysis of UGT1A1, we performed a full sequence analysis of the gene using the patient’s DNA. She was homozygous for a T to G transversion at nucleotide position 1456 in UGT1A1 exon 5 (c.1456T>G), leading to the substitution of aspartate for tyrosine at position 486 of the UGT1A1 protein (p.Y486D). In conclusion, the homozygous mutation of UGT1A1 may be responsible for persistent hyperbilirubinemia in this patient
    corecore