15 research outputs found

    Translational diffusion of individual class II MHC membrane proteins in cells.

    Get PDF
    Single-molecule epifluorescence microscopy was used to observe the translational motion of GPI-linked and native I-E(k) class II MHC membrane proteins in the plasma membrane of CHO cells. The purpose of the study was to look for deviations from Brownian diffusion that might arise from barriers to this motion. Detergent extraction had suggested that these proteins may be confined to lipid microdomains in the plasma membrane. The individual I-E(k) proteins were visualized with a Cy5-labeled peptide that binds to a specific extracytoplasmic site common to both proteins. Single-molecule trajectories were used to compute a radial distribution of displacements, yielding average diffusion coefficients equal to 0.22 (GPI-linked I-E(k)) and 0.18 microm(2)/s (native I-E(k)). The relative diffusion of pairs of proteins was also studied for intermolecular separations in the range 0.3-1.0 microm, to distinguish between free diffusion of a protein molecule and diffusion of proteins restricted to a rapidly diffusing small domain. Both analyses show that motion is predominantly Brownian. This study finds no strong evidence for significant confinement of either GPI-linked or native I-E(k) in the plasma membrane of CHO cells

    Both MHC Class II and its GPI-Anchored Form Undergo Hop Diffusion as Observed by Single-Molecule Tracking

    Get PDF
    Previously, investigations using single-fluorescent-molecule tracking at frame rates of up to 65 Hz, showed that the transmembrane MHC class II protein and its GPI-anchored modified form expressed in CHO cells undergo simple Brownian diffusion, without any influence of actin depolymerization with cytochalasin D. These results are at apparent variance with the view that GPI-anchored proteins stay with cholesterol-enriched raft domains, as well as with the observation that both lipids and transmembrane proteins undergo short-term confined diffusion within a compartment and long-term hop diffusion between compartments. Here, this apparent discrepancy has been resolved by reexamining the same paradigm, by using both high-speed single-particle tracking (50 kHz) and single fluorescent-molecule tracking (30 Hz). Both molecules exhibited rapid hop diffusion between 40-nm compartments, with an average dwell time of 1–3 ms in each compartment. Cytochalasin D hardly affected the hop diffusion, consistent with previous observations, whereas latrunculin A increased the compartment sizes with concomitant decreases of the hop rates, which led to an ∼50% increase in the median macroscopic diffusion coefficient. These results indicate that the actin-based membrane skeleton influences the diffusion of both transmembrane and GPI-anchored proteins

    Cholesterol Depletion Induces Solid-like Regions in the Plasma Membrane

    Get PDF
    Glycosylphosphatidylinositol-linked and transmembrane major histocompatibility complex (MHC) class II I-E(k) proteins, as well as N-(6-tetramethylrhodaminethiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (Tritc-DHPE), are used as probes to determine the effect of cholesterol concentration on the organization of the plasma membrane at temperatures in the range 22°C–42°C. Cholesterol depletion caused a decrease in the diffusion coefficients for the MHC II proteins and also for a slow fraction of the Tritc-DHPE population. At 37°C, reduction of the total cell cholesterol concentration results in a smaller suppression of the translational diffusion for I-E(k) proteins (twofold) than was observed in earlier work at 22°C (five sevenfold) Vrljic, M., S. Y. Nishimura, W. E. Moerner, and H. M. McConnell. 2005. Biophys. J. 88:334–347. At 37°C, the diffusion of both I-E(k) proteins is Brownian (0.9 < α-parameter < 1.1). More than 99% of the protein population diffuses homogeneously when imaged at 65 frames per s. As the temperature is raised from 22°C to 42°C, a change in activation energy is seen at ∼35°C in the Arrhenius plots. Cytoskeletal effects appear to be minimal. These results are consistent with a previously described model of solid-like domain formation in the plasma membrane

    Tunable and reversible drug control of protein production via a self-excising degron

    No full text
    An effective method for direct chemical control over the production of specific proteins would be widely useful. We describe Small Molecule-Assisted Shutoff (SMASh), a technique in which proteins are fused to a degron that removes itself in the absence of drug, leaving untagged protein. Clinically tested HCV protease inhibitors can then block degron removal, inducing rapid degradation of subsequently synthesized protein copies. SMASh allows reversible and dose-dependent shutoff of various proteins in multiple mammalian cell types and in yeast. We also used SMASh to confer drug responsiveness onto a RNA virus for which no licensed inhibitors exist. As SMASh does not require permanent fusion of a large domain, it should be useful when control over protein production with minimal structural modification is desired. Furthermore, as SMASh only involves a single genetic modification and does not rely on modulating protein-protein interactions, it should be easy to generalize to multiple biological contexts

    Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity.

    No full text
    Vertebral and metaphyseal dysplasia, spasticity with cerebral calcifications, and strong predisposition to autoimmune diseases are the hallmarks of the genetic disorder spondyloenchondrodysplasia. We mapped a locus in five consanguineous families to chromosome 19p13 and identified mutations in ACP5, which encodes tartrate-resistant phosphatase (TRAP), in 14 affected individuals and showed that these mutations abolish enzyme function in the serum and cells of affected individuals. Phosphorylated osteopontin, a protein involved in bone reabsorption and in immune regulation, accumulates in serum, urine and cells cultured from TRAP-deficient individuals. Case-derived dendritic cells exhibit an altered cytokine profile and are more potent than matched control cells in stimulating allogeneic T cell proliferation in mixed lymphocyte reactions. These findings shed new light on the role of osteopontin and its regulation by TRAP in the pathogenesis of common autoimmune disorders

    Ustilago maydis effectors and their impact on virulence

    No full text
    corecore