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ABSTRACT Previously, investigations using single-fluorescent-molecule tracking at frame rates of up to 65 Hz, showed that the
transmembrane MHC class II protein and its GPI-anchored modified form expressed in CHO cells undergo simple Brownian
diffusion, without any influence of actin depolymerization with cytochalasin D. These results are at apparent variance with the view
that GPI-anchored proteins stay with cholesterol-enriched raft domains, as well as with the observation that both lipids and
transmembrane proteins undergo short-term confined diffusion within a compartment and long-term hop diffusion between
compartments. Here, this apparent discrepancy has been resolved by reexamining the same paradigm, by using both high-speed
single-particle tracking (50 kHz) and single fluorescent-molecule tracking (30 Hz). Both molecules exhibited rapid hop diffusion
between 40-nm compartments, with an average dwell time of 1–3 ms in each compartment. Cytochalasin D hardly affected the hop
diffusion, consistent with previous observations, whereas latrunculin A increased the compartment sizes with concomitant
decreases of the hop rates, which led to an ;50% increase in the median macroscopic diffusion coefficient. These results indicate
that the actin-based membrane skeleton influences the diffusion of both transmembrane and GPI-anchored proteins.

INTRODUCTION

Recently, Vrljic et al. (1,2) and Nishimura et al. (3), using

single-fluorescent-molecule tracking (SFMT) at frame rates

smaller than 65 Hz, found that the GPI-anchored modified

form of MHC class II protein (GPI-I-Ek) expressed in CHO

cells undergoes simple Brownian diffusion, with an aver-

age effective diffusion coefficient slightly greater than that

of the native transmembrane form of the MHC class II mol-

ecule (TM-I-Ek, by a factor of 1.3–1.9). Furthermore, the

diffusion was not affected by partial actin depolymeriza-

tion using cytochalasin D. These results appear to be at

variance with the ‘‘membrane-skeleton fence model’’ and

the ‘‘anchored-protein picket model’’ proposed previously

(Fig. 1; (4–21)).

In these models, the plasma membrane is parceled up into

apposed domains of 30–200 nm in diameter, due to the

presence of the actin-based membrane skeleton, which is

closely associated with the cytoplasmic surface of the plasma

membrane. In the membrane-skeleton fence model, trans-

membrane proteins protrude into the cytoplasm, and the

cytoplasmic domains of the transmembrane proteins collide

with the membrane skeleton, which induces temporary con-

finement of the transmembrane proteins in the membrane-

skeleton mesh (compartments) (Fig. 1, a and b). In the

anchored-protein picket model, various transmembrane pro-

teins, which are anchored to and aligned along the membrane

skeleton, effectively form rows of pickets, thus creating a

barrier against the free diffusion of both lipids (even those in

the outer leaflet of the membrane) and transmembrane pro-

teins (Fig. 1, a and c). This barrier effect may be due to steric

hindrance and circumferential slowing (5). Circumferential

slowing is the collective term for hydrodynamic friction (in

terms of hydrodynamic theory (22,23)) and increased pack-

ing (in terms of free-volume theory (24,25)), and is highly

enhanced near transmembrane proteins. In terms of the

hydrodynamic theory, the viscosity within the membrane is

;100 times greater than that in water. Therefore, in the

vicinity of immobilized molecules in the membrane, the

movement of other molecules is greatly suppressed, due to

the hydrodynamic dragging effects of the pickets. This hy-

drodynamic dragging effect of immobile proteins propagates

over several nanometers from the protein surface. Therefore,

the compartment boundaries do not have to be totally closed

off by picket proteins to induce temporary confinement of

phospholipids within the compartment. The ‘‘fences’’ would

act on transmembrane proteins, whereas the ‘‘pickets’’

would act on both lipids (including lipid-anchored proteins)

and transmembrane proteins. Therefore, transmembrane

proteins are corralled by both fences and pickets. In both

models, membrane proteins and lipids can hop from a com-

partment to an adjacent one (hop diffusion), probably when

thermal fluctuations of the membrane and the membrane

skeleton create a sufficiently large space between them to

allow the passage of integral membrane proteins, and/or

when an actin filament is temporarily severed. The com-

partmentalization of the cell membrane and the hop diffusion

of the phospholipid molecules among the compartments

were found in all of the eight cultured mammalian cell lines
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examined thus far (6), and the very dense rows of anchored-

protein pickets in the initial segment region of the neuronal

plasma membrane were found to form the macroscopic dif-

fusion barrier in this region (26).

Furthermore, Morone et al. (27) have determined the dis-

tribution of the membrane skeleton mesh size right on the

cytoplasmic surface of the membrane by the three-dimen-

sional reconstruction of the inner surface of the plasma

membrane, using electron tomography. The distributions of

the surface mesh sizes agree well with the compartment sizes

determined from the hop diffusion of a nonraft unsaturated

phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphorylethanol-

amine (DOPE) in high-speed single-particle tracking (SPT).

These results strongly support the membrane-skeleton-based

‘‘fence’’ and ‘‘picket’’ models.

On the other hand, it is still unknown how GPI-anchored

molecules diffuse in the compartmentalized plasma mem-

brane. Since GPI-anchored molecules may be trapped in

cholesterol-enriched raft domains (28,29), the diffusion rates

of GPI-anchored proteins might be much smaller than those

for nonraft molecules, but this has not been found (Table 1;

(1–3,30–34)). More recently, Wieser et al. (35) reported that

CD59, a GPI-anchored protein, basically underwent uncon-

fined simple Brownian diffusion in T24 cells. In contrast,

Schütz et al. (36) found that a putative raft-associating mol-

ecule was trapped within a 700-nm domain (0.2–2 mm) for

long periods (300 ms) in human coronary artery smooth

muscle cells. Furthermore, Shvartsman et al. (37) found that

the mobility of a GPI-linked form of influenza hemagglutinin

was slower than that in a transmembrane nonraft form. In

addition, Lenne et al. (38) and Wenger et al. (39) reported that

GFP-GPI was compartmented within tens of milliseconds

into f , 120 nm domains (the best estimate being ;80 nm)

in COS-7 cells.

In this investigation, we used exactly the same molecules

expressed in the same cell type as those previously used by

Vrljic et al. (1,2) and Nishimura et al. (3), i.e., TM-I-Ek and

GPI-I-Ek expressed in CHO cells, and carried out high-speed

SPT with 40-nm-f colloidal gold probes at a frame rate of

50 kHz (20-ms resolution, enhanced from video rate by a fac-

tor of 1667) as well as single fluorescent-molecule tracking

(SFMT) with the use of fluorescent probes at 30 Hz (video

rate). The diffusion coefficients for the MHC class II proteins

and the GPI-anchored proteins reported thus far are sum-

marized in Table 1, but it is difficult to deduce the mecha-

nisms that regulate the diffusion of these molecules in the

plasma membrane. By observing both TM-I-Ek and GPI-I-Ek,

and by using single-molecule high-speed tracking, we hope

to gain more insights in this mechanism.

We examined the following three key problems with regard

to the diffusion of GPI-anchored proteins using GPI-I-Ek,

and compared the results with those for TM-I-Ek:

1. Do GPI-anchored proteins actually undergo hop diffu-

sion if they are observed at higher frame rates?

FIGURE 1 Proposed mechanisms for the compartmentalization of the

plasma membrane for the translational diffusion of transmembrane proteins and

GPI-anchored proteins in the membrane: corralling by the membrane-skeleton

‘‘fences’’ and the anchored-protein ‘‘pickets.’’ The plasma membrane may be

parceled up into closely apposed domains (compartments) for the translational

diffusion of transmembrane proteins and lipids (or GPI-anchored proteins). All

of the membrane constituent molecules undergo short-term confined diffusion

within a compartment and long-term hop diffusion between these compartments.

This may be due to corralling by two mechanisms: the membrane-skeleton

‘‘fences’’ and the anchored-protein ‘‘pickets.’’ In this study, we examined two

varieties of MHC class II molecules, I-Ek (I-Ek indicates the k allele in the I-E

region): the native single-pass transmembrane type (TM-I-Ek) and a modified

protein with a GPI-anchor (GPI-I-Ek). Both the GPI-linked and TM-I-Ek

molecules share the same extracellular domain. In GPI-I-Ek, the cytoplasmic

and transmembrane moieties of the TM-I-Ek are replaced by two GPI-linkers that

tether it to the outer leaflet of the plasma membrane (72). These molecules were

expressed in CHO cells, and those located in the upper plasma membrane were

observed. (a) The side-view schematic representation of TM-I-Ek, GPI-I-Ek, and

an MSK-anchored protein (membrane skeleton-anchored proteins, gray cylin-

der). The former two molecules are mobile, whereas MSK-anchored proteins are

immobile. (b) The membrane-skeleton ‘‘fence’’ or ‘‘corral’’ model, showing

that transmembrane proteins are confined within the mesh of the actin-based

membrane skeleton, as viewed from inside the cell. Meanwhile lipids and GPI-

anchored proteins, located in the outer leaflet of the membrane, do not directly

interact with the membrane skeleton. (c) The anchored-protein ‘‘picket’’ model,

showing MSK-anchored proteins, effectively represent the immobile obstacles

to the diffusion of transmembrane proteins, lipids, and GPI-anchored proteins, as

viewed from outside the cell.
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2. Does GPI-I-Ek, but not TM-I-Ek, exhibit confinement

within 80-nm or 700-nm domains for several 10s of mil-

liseconds or longer, as previously suggested for putative

raft-associating molecules (36,38,39)?

3. Does the treatment of cells with drugs that affect actin

polymerization, such as cytochalasin D and latrunculin

A, induce changes in the diffusion of GPI-anchored

proteins? (Note that Vrljic et al. (1,2) and Nishimura

et al. (3) previously failed to detect any changes in the

diffusion characteristics, after the cells were treated with

cytochalasin D.)

MATERIALS AND METHODS

Cell culture

For the details of culturing CHO cells expressing TM-I-Ek or GPI-I-Ek, see

Vrljic et al. (1). Cells expressing these proteins were plated on 18 3 18-mm

coverslips (IWAKI, Chiba, Japan) for SPT observations or on 12 mm-f

glass-bottom dishes (IWAKI) for SFMT observations, and were grown for a

day before the microscope experiment. The glass surface was coated with 50

mg/ml fibronectin from human plasma (CalBiochem, San Diego, CA), as

described previously (1).

Preparation of colloidal gold probes

The TM-I-Ek and GPI-I-Ek expressed on the CHO cell surface were first

labeled with anti-I-Ek-Fab, and then the cells were further incubated with

anti-mouse IgG-Fab-coated 40 nm colloidal gold particles. The anti-I-Ek-Fab

was prepared from anti-I-Ek-IgG (14-4-4s) purified from the hybridoma

(HB32, ATCC, Manassas, VA) supernatant. The minimal protecting amount

(MPA, defined as the minimum concentration of the protein needed to sta-

bilize colloidal gold particles in suspension) of anti-mouse IgG-antibody Fab

(Cappel, Organon Teknica, Durham, NC) was determined to be 3.3 mg/ml

(40,41). Colloidal-gold probes coated with the MPA of Fab were prepared by

mixing 50 ml of 36 mg/ml anti-mouse IgG Fab in 2 mM borate buffer (pH

9.2) and a 500 ml suspension of colloidal gold (BBInternational, Cardiff,

UK) on a slowly tumbling shaker for 15 min at room temperature. The gold

probe was stabilized by the further addition of bovine serum albumin (BSA)

at a final concentration of 1% (w/v). After sedimentation, the gold probe was

resuspended in RPMI medium supplemented with 10% fetal bovine serum

and 1% BSA, sterilized by filtration through a 0.22-mm filter (Millipore,

Bedford, MA), and then used within 5 h.

SFMT of fluorophore-labeled TM-I-Ek, GPI-I-Ek,
and DOPE

See Fig. 2 (left). TM-I-Ek and GPI-I-Ek were labeled by using either anti-I-Ek

Fab conjugated with Alexa594 (Molecular Probes, Eugene, OR); the final

TABLE 1 Effective macroscopic diffusion coefficients for MHC class II proteins and GPI-anchored proteins

Molecule* Celly Probez/Method

Deff mean (6 SD)

(mm2/s)

Mobile fraction

(%)

Frame time

(ms)

Temp.

(�C) Ref.

TM-I-Ek CHO Alexa594-Fab/SFMT 0.15 (6 0.12) 91 33 37 {

Cy3-peptide/SFMT 0.15 (6 0.078) 95 33 37 {

TM-I-Ek CHO Cy5-peptide/SFMT 0.59 (6 0.04) ? 15.4 37 (3)

0.15 (6 0.0033) ? 15.4 22 (3)

TM-I-Ek CHO Cy5-peptide/SFMT 0.18 (6 0.013) 100 100 22 (1)

HLA-DR M1DR1 PE-IgG/SPT 0.13–1.9 3 10�4 ? k RT§ (61)

HLA-DR HT29 FITC-IgG/FRAP ;0.2 60–70 NA§ ? (62)

I-Ad A20 TRITC-Fab/FRAP 0.017 ;60 NA 37 (63)

I-Ak M12.C3 TAMRA-Fab/FRAP 0.011–0.023 75 NA RT (64)

I-Ak M12.C3 FITC-Fab/FRAP 0.010–0.030 36–73 NA 20/30 (65)

I-Ak TA3 FITC-IgG/FRAP 0.42 (6 0.24) 65 NA 23 (66)

I-A Normal B cell FITC-Fab/FRAP 0.05–0.09 24–61 NA 22 (67)

GPI-I-Ek CHO Alexa594-Fab 0.33 (6 0.30) 93 33 37 {

Cy3-peptide/SFMT 0.32 (6 0.23) 97 33 37 {

GPI-I-Ek CHO Cy5-peptide/SFMT 1.1 (6 0.06) ? 15.4 37 (3)

0.19 (6 0.0059) ? 15.4 22 (3)

GPI-I-Ek CHO Cy5-peptide/SFMT 0.22 (6 0.031) 94–100 100 22 (1)

Thy-1 3T3 fibroblast Gold-IgG/SPT 0.19 ? ** 37 (68)

Thy-1 C3H 10T1/2 fibroblast Gold-IgG/SPT 0.0035–0.081 90 33 37 (69)

GFP-GPI Rat hippocampal neuron Q-dot-(Fab9)2/SPT ;0.4 ? 70 37 (70)

GFP-GPI, GFP-CD59,

YFP-GL-GPI

COS-7, NRK, BHK-21 GFP, YFP/confocal FRAP 0.4–0.7 ;90 NA 37 (34)

HA-GPI (trimer) CHO TRITC-Fab9/FRAP 0.099 67 NA 37 (71)

GFP-GPI, GFP-Thy-1 COS-7 GFP/FCS, confocal FRAP ;1.1 ;90 NA 37 (38)

*GPI, glycosylphosphatidylinositol; YFP-GL-GPI, yellow fluorescent protein-N-glycosylated-GPI; and HA-GPI, GPI-anchored modified form of influenza

hemagglutinin (HA).
yCHO, Chinese hamster ovary; COS-7, transformed African green monkey kidney fibroblast; NRK, normal rat kidney; and BHK-21, baby hamster kidney.
zSFMT, single fluorescent molecule tracking; PE, R-phycoerythrin; SPT, single particle tracking; TRITC, tetramethylrhodamine isothiocyanate; FRAP,

fluorescence recovery after photobleaching; TAMRA, 6-(tetramethylrhodamine-5-(and-6)-carboxamindo) hexanoic acid succinimidyl ester; FITC, fluorescein

isothiocyanate; Q-dot, quantum dot; and FCS, fluorescence correlation spectroscopy.
{This work.
§NA, not applicable; RT, room temperature.
kImages were typically recorded every 1 or 2 min with an exposure time of 5 s.

**Two frames every 10 s.
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molar ratio of fluorochrome to protein was 0.2–0.3:1) or Moth Cytochrome c

peptide, MCC 95–103 (IAYLKQATK, custom-ordered from the Peptide

Institute, Osaka, Japan) labeled at the N-terminus with Cy3 mono functional

dye (Amersham-Pharmacia, Uppsala, Sweden; precisely one dye molecule

per peptide chain). Cells were incubated with 4–40 nM Alexa594-anti-I-Ek

Fab or with 30–300 nM (0.05–0.5 mg/ml) Cy3-MCC 95–103 peptide for

15–30 min at 37�C, in RPMI 1640 medium supplemented with 10% FBS and

1% BSA without phenol red (the same medium was used for microscope

observations). For SFMT of DOPE, first Alexa594-DOPE (custom-ordered

from Molecular Probes) in methanol (14 mM) was mixed with RPMI 1640

medium without 10% FBS and phenol red by vigorous vortexing (70 nM

final concentration), and then this solution was added to the cells cultured on

a glass-bottom dish at 37�C (final concentration 7 nM).

All observations of the cells were carried out at 37�C for up to 20 min. No

efforts for deoxygenation, such as the procedures employed by Vrljic et al.

(1,2) and Nishimura et al. (3), were made. Individual Alexa594 molecules

were monitored on the upper cell membrane at video rate (30 Hz), using the

oblique illumination mode of a homebuilt objective lens-type total internal

reflection fluorescence microscope (42–44). Briefly, a 594.1-nm laser beam

(He-Ne laser; Melles Griot, Carlsbad, CA) and a 532-nm laser beam (the

second harmonic of the Nd:YAG laser beam, Model 4501-050; Uniphase,

San Jose, CA) were attenuated with neutral density filters, circularly polar-

ized, and then steered into the edge of a high numerical aperture (NA)

objective lens (PlanApo 1003, NA ¼ 1.4; Olympus, Tokyo, Japan) with a

focus at the back-focal plane of the objective lens on an Olympus inverted

microscope (IX-70).

The precision of the position determination was estimated from the stan-

dard deviation of the coordinates of Alexa594-Fab and Cy3-peptide adsorbed

to a poly-L-lysine-coated coverslip, overlaid by a 15% polyacrylamide gel

(5% cross-linker) (16,45), and was �20 nm at a time resolution of 33 ms.

SPT of TM-I-Ek, GPI-I-Ek, and DOPE, tagged by
40-nm-f colloidal gold particles

See Fig. 2 (right). For the TM-I-Ek and GPI-I-Ek observations, these mem-

brane molecules were labeled with anti-I-Ek Fab fragments and then labeled

with gold probes coated with anti-mouse IgG antibody Fab fragments (gold

particles could not be directly coated with anti-I-Ek Fab fragments, due to the

inability of these Fab fragments to protect the gold surface). First, the anti-I-Ek

Fab (8 mg/ml final concentration) was incubated with CHO cells expressing

TM-I-Ek or GPI-I-Ek, which were cultured on coverslips, and then after

washing the cells, gold probes conjugated with anti-mouse IgG Fab were

applied to the cells. All observations of the gold probes were carried out at

37�C within 20 min after the application of the gold probes to the cells, which

was very effective for reducing the number of gold particles exhibiting slow

diffusion or immobilization.

For SPT of DOPE, gold probes coated with anti-fluorescein antibody Fab

fragments were bound to fluorescein-DOPE (fluorescein was simply used as

a tag, rather than a fluorescent probe), which was preincorporated in the cell

membrane, as described in Fujiwara et al. (5) and Murase et al. (6). Briefly,

after fluorescein-DOPE was incorporated in the cell membrane by the ad-

dition of 2 mg/ml (final concentration) of fluorescein-DOPE, gold probes

conjugated with the anti-fluorescein antibodies’ Fab fragments were applied

to cells cultured on 18 3 18-mm coverslips. For the observations with en-

hanced frame rates, a digital high-speed camera with a C-MOS sensor was

used (Fastcam-APX RS; Photron, Tokyo, Japan (5,6,14,19)). For high-speed

video microscopy, bright-field optical microscopy, rather than Nomarski

microscopy, was employed. We used an Alpha-Plan-Fluar 1003 oil im-

mersion objective lens with a numerical aperture of 1.45 (Carl Zeiss,

Oberköchen, Germany). The sequence of images was replayed at the video

rate (30 Hz) with analog and digital enhancements by an image processor

(DVS-3000, Hamamatsu Photonics, Hamamatsu, Japan), and was recorded

on a digital video tape recorder (DSR-20, Sony, Tokyo, Japan).

The precision of the position determination was estimated by the same

method employed in SFMT using 40-nm-f gold particles, and was 16 nm at

a time resolution of 20 ms.

Obtaining the trajectories of membrane
molecules and the plots of mean-square
displacement (MSD) versus time

The positions (x and y coordinates) of the selected gold particles or fluo-

rescent molecules were determined by a computer that employs the method

developed by Gelles et al. (46). For each trajectory, the mean-square dis-

placement (MSD), ÆDr(Dt)2æ, for every time interval (Eq. 1) was calculated

according to the formula (16,47,48)

MSDðndtÞ ¼ 1

N � 1� n
+

N�1�n

j¼ 1

f½xðjdt 1 ndtÞ � xðjdtÞ�2

1 ½yðjdt 1 ndtÞ � yðjdtÞ�2g; (1)

where dt is the video frame time and x(jdt 1 ndt), y(jdt 1 ndt) describes the

particle position after a time interval Dtn ¼ ndt after starting at position

(x(jdt), y(jdt)), N is the total number of frames in the video recording

sequence, n and j are positive integers, and n determines the time increment.

To keep the statistical spread in the MSD within reasonable levels for the

duration of 0–1 s, TM-I-Ek, GPI-I-Ek, and DOPE trajectories of 3 s (90 video

frames) were used for the quantitative analysis ((49–51); see Figs. 3–5).

Classification of the mode of diffusion,
calculation of the diffusion coefficient, and
analysis of the high-speed SPT trajectories

For a detailed description of the data analysis methods, see Fujiwara et al. (5)

and Suzuki et al. (19).

We designate the effective diffusion coefficients (with an indication of the

midpoint of the linear fitting) as Deff(time resolution)midpoint. For example,

Deff(33ms)100ms (in this case, 33 ms is the time resolution employed for the

observation) and Deff(20ms)60ms (observation rate of 20 ms/frame) correspond

to D2–4, defined in Kusumi et al. (16) and described in Suzuki et al. (19).

A statistical method for classifying each trajectory into confined-hop

diffusion, simple Brownian diffusion, simple-Brownian diffusion with a

drift, or immobile modes, based on the MSD-Dt plot, was described by

FIGURE 2 Experimental design for single fluorescent-molecule tracking

(SFMT, left) and single-particle tracking (SPT, right). (Left) Single fluorescent-

molecule tracking (SFMT), carried out at video rate (30 Hz; 33-ms

resolution), providing the effective diffusion coefficient on the timescale

of 100 ms, Deff(33ms)100ms. TM-I-Ek and GPI-I-Ek were labeled with either

Alexa594-conjugated anti-I-Ek Fab fragments or the Cy3-tagged peptide (Moth

Cytochrome c peptide, MCC 95–103 (IAYLKQATK)) at its N-terminus.

Alexa594-conjugated DOPE was incorporated in the cell membrane. (right)

Single-particle tracking (SPT), carried out at a 50,000 Hz frame rate (20-ms

resolution), providing the compartment size sensed by the diffusant. TM-I-Ek

and GPI-I-Ek were labeled with anti-I-Ek Fab fragments and then labeled

with gold probes coated with anti-mouse IgG antibodies’ Fab fragments. For

SPT of DOPE, gold probes coated with anti-fluorescein antibody Fab

fragments were bound to fluorescein-DOPE, which was preincorporated in

the cell membrane (5,6).
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Kusumi et al. (16). Briefly, all of the trajectories were first classified into

mobile and immobile ones (see Fig. 5 and its related text in Results), and the

mode-of-motion classification was carried out only for the trajectories that

were classified as mobile (see Fig. 4 a and its related text in Results). The

ensemble-averaged RD is�,�, or� 1, when the molecules are undergoing

confined-hop diffusion, simple Brownian diffusion, or simple-Brownian

diffusion with a drift (directed diffusion mode), respectively. Fig. 4 a shows

the theoretical curves for

1. Simple Brownian diffusion, in which MSD(Dt) ¼ 4DDt.

2. Directed diffusion mode, in which a molecule moves in a direction at a

constant drift velocity (vx, vy), with superimposed random diffusion,

MSD(Dt) ¼ 4DDt 1 v2 (Dt)2, where v2 ¼ v2
x1v2

y:

3. Confined diffusion, in which a molecule undergoes Brownian diffusion

while totally confined within a limited area (compartment; 0 # x # Lx,

0 # y # Ly) during the observation period.

The MSD-Dt plot levels off and asymptotically approaches a constant

value, as expressed by

MSDxðDtÞ ¼ L
2

x

6
� 16L

2

x

p
4 +

N

n¼1ðoddÞ

1

n
4 exp �1

2

npsx

Lx

� �2

Dt

( )
;

MSDyðDtÞ ¼
L

2

y

6
�

16L
2

y

p
4 +

N

n¼1ðoddÞ

1

n
4 exp �1

2

npsy

Ly

� �2

Dt

( )
;

s
2

x ¼ 2Dx; s
2

y ¼ 2Dy; 4D ¼ 2Dx 1 2Dy

L
2

r ¼ L
2

x 1 L
2

y:

For the analysis of the trajectories obtained by using high-speed SPT with

20-ms resolutions and classified into the confined diffusion mode (under

the analysis conditions employed therein), the MSD-Dt plots in the x or y
directions were fitted with a homemade program based on the hop diffusion

theory of Powles et al. (52), in which a particle undergoes diffusion in the

presence of semipermeable barriers placed at an equal distance (termed ‘‘hop

fit’’ in this article; see also (5,6,19)). In the analysis, the time evolution of the

probability distribution depends on three parameters: the distance between

barriers, L, the true diffusion coefficient in the absence of barriers, Dmicro, and

the permeability of the barriers, P. Powles et al. (52) also derived a rela-

tionship between the permeability and the long-term diffusion coefficient,

DMACRO, DMACRO/Dmicro ¼ [1 1 (PL)�1]�1.

The correct hop rate (or the residency time within a compartment) was

evaluated from the macroscopic diffusion coefficient, determined by SFMT

with a fluorescent probe, and the compartment size, determined by SPT with

a gold probe. Individual compartments for each trajectory were automatically

identified by the computer program (5,6,19).

Drug treatments

Latrunculin A (Molecular Probes) and cytochalasin D (Sigma, St. Louis,

MO) were dissolved in methanol. The treatment of cells with latrunculin A

was done by incubating the cells in the RPMI medium supplemented with

1% BSA (Sigma), containing 1 mM latrunculin A (0.01% methanol) under

the microscope observation at 37�C, and the observation was carried out

between 5 and 20 min after the drug addition. Likewise, with 1 mM and

10 mM cytochalasin D (0.006% and 0.06% methanol), the cells were treated

for 1 min at 37�C, and then the observation was continued for up to 5 or 12 min.

Control cells were treated with an equivalent amount of methanol alone.

RESULTS

Typical SFMT trajectories for TM-I-Ek, GPI-I-Ek,
and Alexa594-DOPE obtained at video rate

All experiments were carried out at 37�C. Vrljic et al. (1,2)

and Nishimura et al. (3) observed the diffusion of individual

TM-I-Ek and GPI-I-Ek using a Cy5-peptide (MCC 95–103 pep-

tide, with one Cy5 dye attached per peptide at its N-terminus)

that binds to a specific site on MHC class II molecules with

high specificity. In this study, we used Alexa594-conjugated

FIGURE 3 Representative trajectories and ensemble-

averaged MSD-Dt plots for TM-I-Ek, GPI-I-Ek, and

DOPE observed at a 33-ms resolution. (a) Representative

trajectories in the CHO cell plasma membrane for 3 s (total

number of frames, N, is 90). The colors (purple, cyan, green,

orange, and red) represent the passage of time (every 600 ms

or 18 video frames). (b) Ensemble-averaged mean-square

displacement (MSD) as a function of time (t) for TM-I-Ek,

GPI-I-Ek, and DOPE averaged over all molecules examined

in this study. (Cyan line) Cy3-peptide probe. (Red line)

Alexa594-Fab probe for TM-I-Ek and GPI-I-Ek or

Alexa594-DOPE. Ensemble-averaged MSD-Dt plots for

these molecules were fitted by straight lines in the range

between 0 and 1 s. Deff(33ms)500ms values of TM-I-Ek, GPI-

I-Ek, and DOPE with Alexa594-Fab probes were 0.13, 0.25,

and 0.12 mm2/s, respectively. Deff(33ms)500ms values of

TM-I-Ek and GPI-I-Ek with Cy3-peptide probes were 0.13

and 0.24 mm2/s, respectively. The averaged MSD values for

TM-I-Ek, GPI-I-Ek, and DOPE were obtained by averaging

the corrected MSD of each molecule over all molecules. The

corrected MSD for each molecule was obtained by sub-

tracting the y intercept of the straight line fitted for

MSD(2dt), MSD(3dt), and MSD(4dt) (as noise) from the

uncorrected MSD for each molecule (16). Error bars for

each ensemble-averaged MSD represent standard errors.

For the viewability of the plots, the experimentally obtained

points of TM-I-Ek and those of GPI-I-Ek are alternatingly

shown.

Hop Diffusion of GPI-Anchored Protein 439

Biophysical Journal 95(1) 435–450



anti-I-Ek Fab (the final molar ratio of fluorochrome to protein

was 0.2–0.3:1) in addition to the peptide (conjugated with

Cy3) (Fig. 2). They were observed at a 33-ms resolution for a

period of 3 s in the upper cell membrane of CHO cells by

SFMT, using the oblique illumination mode of a homebuilt

objective lens-type total internal reflection fluorescence mi-

croscope. Each fluorescent spot of the Alexa594-conjugated

anti-I-Ek Fab and Cy3-peptide in the microscope image was

found to represent a single molecule, based on the single-step

photobleaching (1,5,42).

Fig. 3 a shows typical trajectories of Alexa594-conjugated

anti-I-Ek-Fab bound to TM-I-Ek and to GPI-I-Ek, and

Alexa594-DOPE, a DOPE molecule tagged with Alexa594

in the headgroup region and incorporated in the cell membrane

of CHO cells. Fig. 3 b shows ensemble-averaged MSD-Dt
plots for TM-I-Ek and GPI-I-Ek observed with Alexa594-Fab

(red) and Cy3-peptide (cyan), as well as Alexa594-DOPE

(right) on the timescale of 1 s. These plots were fitted by

straight lines in the range between 0 and 1 s, suggesting that

TM-I-Ek, GPI-I-Ek, and DOPE on average underwent apparent

simple Brownian diffusion on the 1-s scale. The averaged

Deff(33ms)500ms values of TM-I-Ek and GPI-I-Ek labeled with

Alexa594-Fab and of Alexa-DOPE were 0.13, 0.25, and 0.12

mm2/s, respectively (designated as Deff(time resolution)midpoint;

see Materials and Methods). The diffusion coefficients of

TM-I-Ek and GPI-I-Ek with the Cy3-peptide probes were

virtually the same as those with the Alexa594-Fab probes.

Classification of single-molecule trajectories into
different diffusion modes

We next performed a statistical analysis of each single-

molecule trajectory to classify each trajectory into simple

Brownian, directed, confined-hop, or immobile modes, based

FIGURE 4 Theoretical curves for MSD-Dt plots of

simple Brownian diffusion, directed diffusion, and confined

diffusion, and the distributions of RD(N, n) for TM-I-Ek,

GPI-I-Ek, and DOPE, observed at video rate (30 Hz),

employing fluorescent and colloidal-gold probes (N ¼ 90;

n ¼ 30). (a) Theoretical curves for simple Brownian

diffusion (I), directed diffusion (II), and confined-hop

diffusion (III) are shown for two-dimensional diffusion.

The curves were plotted according to the equations in

Classification of the Mode of Diffusion, Calculation of the

Diffusion Coefficient, and Analysis of the High-Speed SPT

Trajectories. The graphs were drawn assuming that the

short-term diffusion coefficients (1/4 of the initial slope at

Dt ¼ 0) are the same for all of the cases. RD(N, n) where

N ¼ total number of frames and n ¼ time windows for the

analysis, is defined as the ratio of an experimental MSD(ndt)

to the fictitious MSD at time ndt (4D2–4ndt), assuming that

the molecule undergoes simple Brownian diffusion without

confinement or directed diffusion with a diffusion coeffi-

cient determined from the initial slope (4D2–4 is the slope

determined from a linear fit to the MSD values at the sec-

ond, third, and fourth steps of elapsed time, shown as red
line). The larger the RD is from 1, the higher the probability

of directed diffusion. Meanwhile, the smaller the RD is from 1,

the higher the probability of confined-diffusion. (b) The dis-

tribution of RD(N, n) ¼ MSD(N, n)/[4 3 Deff(33ms)100ms 3

0.033n] for N¼ 90 and n¼ 30, i.e., the ratio of the observed

MSD(N, n) averaged over an N-step trajectory versus the

MSD(N, n) expected from the initial slope of the MSD-Dt

curve (averaged over the N-step trajectory). Here, N (the

total trajectory length) ¼ 90 frames, and the analysis time

window n ¼ 30 steps (1 s). For the classification of the

trajectories into different diffusion modes, first, many sim-

ple Brownian trajectories were generated by Monte Carlo

simulation to determine the distribution of RD(90, 30) for

simple Brownian particles, and then RD(90, 30) values of

2.5% of population at each edge of the distribution were

taken as limits to simple Brownian behavior and are re-

ferred to as RD(90, 30)min (red line) and RD(90, 30)max

(cyan line) (16). If a molecule (a particle) exhibits an

RD(90, 30) ,RDmin(90, 30), between RDmin(90, 30) and RDmax(90, 30), or .RDmax(90, 30), then it is classified as having a confined-hop, simple Brownian, or

directed diffusion mode, respectively. The sum of the percent values may not be 100 due to the presence of immobile fluorescent spots (all of the gold particles

attached to the plasma membrane were mobile). The majority of the TM-I-Ek, GPI-I-Ek, and DOPE (mobile) trajectories were classified into the simple

Brownian mode, irrespective of the probes employed here.
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on the MSD-Dt plot (16), rather than characterizing the

collective diffusion properties. Fig. 4 a shows representative

theoretical curves of MSD-Dt plots for simple Brownian

diffusion, directed diffusion, and confined-hop diffusion,

with the same microscopic diffusion coefficient.

Firstly, any fluorescent spot exhibiting a diffusion coeffi-

cient in a 100-ms time-window (Deff(33ms)100ms) ,0.007

mm2/s was classified into the immobile mode in this experi-

ment, in the sense that it cannot be distinguished from the

immobilized probe on the coverslip. The value of 0.007 mm2/s

was selected as the lowest detectable limit for Deff(33ms)100ms,

because it was a spot exhibiting the top 2.5 percentile value in

the distribution of the nominal Deff(33ms)100ms in the range

below 0.009 mm2/s, which the Alexa594-Fab or Cy3-peptide

attached to the cover glass exhibited (Fig. 5 a, top). The

fraction classified as the immobile mode was in the range of

3–9% for all of the molecules studied here. These immobile

probes might be the probes that are bound to the cell surface

nonspecifically.

Next, the mode-of-motion classification was carried out,

but only for trajectories that were classified into the mobile

mode. This method employs the parameter RD(N, n), which

describes the long-term deviation of the actual MSD(N, n) at

the time ndt (N ¼ the full length in the number of image

frames in a trajectory; n ¼ the number of frames used for the

analysis in the MSD-Dt plot, dt ¼ duration of each frame)

from the expected MSD based on the initial slope of the MSD-

Dt plot, 4D2-4ndt, i.e., RD(N, n) ¼ MSD(N, n)/[4D2-4ndt]
(Fig. 4 a and see Materials and Methods). In the case of

molecules undergoing simple Brownian diffusion, the aver-

age value of RD(N, n) is 1, although the value for each

individual trajectory of Brownian molecules would show a

statistical spread at ;1. Using Monte Carlo simulation, we

generated 5000 90-step trajectories (here N is 90), and the

ideal statistical spread of the RD(90, 30) was obtained, as

shown in Fig. 4 b (top). For the classification of the trajec-

tories into different diffusion modes, RD(90, 30) values that

gave the 2.5 percentile of particles from both ends of the

FIGURE 5 Distributions of the effective diffusion coefficients for a 100-ms

window, Deff(33ms)100ms, using different probes. (a) (Top) Determination of

the lowest Deff(33ms)100ms distinguishable from the immobile spot (this is

determined by the noise level). Alexa594-Fab (gray bars) or Cy3-peptide

(orange bars) attached to the cover glass exhibited the nominal Deff(33ms)100ms

in the range below 0.009 mm2/s (median values shown by arrowheads). Due

to statistical dispersion of MSD values, many trajectories gave negative

values for Deff(33ms)100ms, which are represented by a bar for spots

exhibiting 0.0001 mm2/s or smaller. A spot exhibiting the top 2.5 percentile

value in this distribution was selected as the lowest detectable limit for

Deff(33ms)100ms, i.e., 0.007 mm2/s (shown by the cyan line). Any spot

exhibiting a Deff(33ms)100ms value , 0.007 mm2/s was classified into the

immobile mode in this experiment (in the sense that it cannot be distin-

guished from the immobilized probe on the coverslip). (Middle and bottom

boxes) TM-I-Ek and GPI-I-Ek labeled with Alexa594-Fab (gray bars) or

Cy3-peptide (orange bars), showing no statistically significant difference

between the Fab and peptide probes. Arrowheads indicate the median

values. There were no significant differences in these diffusion coefficients

between the labels. GPI-I-Ek diffused 1.6-fold faster than TM-I-Ek and

DOPE (the Wilcoxon statistical test result; p , 0.05, also see b). (b) TM-I-Ek

and GPI-I-Ek were labeled with colloidal-gold probes coated with the MPA

of anti-mouse IgG-antibody Fab, whereas DOPE was labeled with gold

probes coated with the threefold MPA of the anti-fluorescein antibodies’ Fab

fragments in the presence of the free anti-fluorescein antibodies’ Fab

fragments. Gold probes (open bars with black outlines) exhibited diffusion

coefficients 3–7-fold smaller than fluorescent Alexa probes (gray bars),

probably due to steric hindrance and/or crosslinking. The lower-limit of the

diffusion coefficients that can be evaluated by SPT of gold-Fab was 0.0003

mm2/s, which is indicated by a black vertical line (at video rate; 16). No

gold-tagged molecule was classified into the immobile mode.
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distribution, referred to as RDmin(90, 30) and RDmax(90, 30),

were determined, as described by Kusumi et al. (16) (shown

in Fig. 4 b by vertical red and cyan lines, respectively). When

the trajectory of an experimental molecule shows an RD
value between RDmin and RDmax, it is classified into the

simple Brownian diffusion mode, and when RD . RDmax or

RD , RDmin, it is classified into the directed or confined-

hop diffusion mode, respectively. Greater than 74% of the

TM-I-Ek, GPI-I-Ek, and DOPE trajectories were classified

into the simple Brownian diffusion mode, irrespective of

the probes employed here (Fig. 4 b). These results were

consistent with the results reported by Vrljic et al. (1,2) and

Nishimura et al. (3), but not with those reported by Schütz

et al. (36). None of the trajectories exhibited confinement

within f ; 80 nm domains, as reported by Lenne et al. (38)

and Wenger et al. (39), but the video-rate (a frame rate at once

every 33 ms) might be too slow to detect transient confine-

ment for several 10s of milliseconds.

The Alexa594-Fab and Cy3-peptide probes
display similar diffusion behaviors

Since the majority of the mobile molecules exhibited ap-

parent simple Brownian diffusion at video rate (Fig. 4 b), the

motion of each molecule observed at this frame rate can

be characterized by a single effective diffusion coefficient.

The distributions of the effective diffusion coefficients,

Deff(33ms)100ms, for the median values TM-I-Ek and GPI-I-

Ek labeled with Alexa594-Fab or Cy3-peptide, as well as the

distributions for these probes bound to the glass surface

(control for immobile molecules), are shown in Fig. 5 a. The

median values for TM-I-Ek and GPI-I-Ek with Alexa-Fab

were 0.14 and 0.23 mm2/s, respectively, and those with

the Cy3-peptide were 0.15 and 0.23 mm2/s, respectively

(excluding the immobile fraction, defined as the spots with

Deff(33ms)100ms ,0.007 mm2/s; see the cyan line in Fig. 5 a).

There were no significant differences in these diffusion co-

efficients of TM-I-Ek and GPI-I-Ek between the two different

labels (Alexa594-Fab and Cy3-peptide). These results, along

with the results of the ensemble-averaged MSD-Dt plots for

the Alexa594-Fab and Cy3-peptide probes (Fig. 3 b), indicate

that both of these probes can be employed to study the

dynamics of TM-I-Ek and GPI-I-Ek. Since the labeling effi-

ciency of Alexa594-Fab is much better than that of Cy3-

peptide, we performed all of the following experiments using

Alexa594-Fab probes.

Video-rate SPT observations of gold-tagged
TM-I-Ek, GPI-I-Ek, and DOPE

Next, we intended to observe the diffusion of these molecules

at a much higher frame rate to examine the possibility of

anomalous diffusion, such as hop diffusion or confinement

within ;80-nm domains for tens of milliseconds (5,6,14,19).

Since achieving higher time resolutions with fluorescent

probes is difficult due to the problem of low signal/noise

ratios, we carried out single-particle tracking (SPT) with

40-nm-f colloidal gold probes (see Fig. 2 and Materials

and Methods).

We first observed gold-labeled molecules at video rate, to

compare their diffusions with those of fluorescently-labeled

molecules. Fig. 3 a (bottom) shows typical trajectories of

gold-labeled TM-I-Ek, GPI-I-Ek, and DOPE, observed at a

33-ms resolution using SPT. No gold-tagged molecule was

classified into the immobile mode. A statistical analysis

classified almost all of the trajectories of the gold-tagged

molecules, as well as those of the fluorescently-labeled mol-

ecules, into the simple Brownian diffusion mode (Fig. 4 b,

bottom). The distributions of Deff(33ms)100ms for these

molecules are shown in Fig. 5 b (black open bars; compare

those with gray bars, representing data with the Alexa-Fab

probe). The median values of the diffusion coefficients of

gold-labeled TM-I-Ek, GPI-I-Ek, and DOPE in a 100-ms

time-window (Deff(33ms)100ms) were 0.044, 0.032, and 0.061

mm2/s, respectively, which are 3–7-fold smaller than those of

the Alexa594-labeled molecules. These results suggest that

the diffusion of gold-labeled molecules may be slowed, due

to steric hindrance and/or the crosslinking effect of gold

probes attached to these molecules.

Previously, in the NRK cell membrane using the same

Cy3-DOPE and gold-tagged DOPE, Fujiwara et al. (5) found

that these probes gave the same diffusion coefficients, as long

as the time-window for evaluating the diffusion coefficient

was ,100 ms. This difference is probably due to the very

small compartment size in the CHO cell membrane (40 vs.

230 nm in NRK cells), as described below. Gold-labeled

molecules collide with the compartment boundaries ;30-

fold ([230/40]2) more often in CHO cells than in NRK cells,

which is likely to make the Deff(33ms)100ms of these gold-

labeled molecules very sensitive to low levels of gold-

induced crosslinking.

High-speed SPT with gold-tags revealed the hop
diffusion of TM-I-Ek, GPI-I-Ek, and DOPE

The movements of gold-tagged TM-I-Ek, GPI-I-Ek, and

DOPE were examined at a time resolution of 20 ms (at 50,000

frames/s), an enhancement by a factor of 1667 from the

normal video rate (once every 33 ms). Their typical trajec-

tories, shown in Fig. 6 a, suggest that all of these molecules

undergo hop diffusion in the plasma membrane. In Fig. 6 a,

each color indicates plausible confinement within a com-

partment. Individual plausible compartments were identified

by software developed in our laboratory as well as by visual

examination (5,6,19). The residency time for each compart-

ment is indicated in the same color.

Fig. 6 b shows the ensemble-averaged MSD-Dt plots of the

gold-tagged molecules, on a timescale of 5 ms (out of 100-ms

trajectory or 250 frames out of 5000 frames). In this display,

it is clear that the MSD-Dt curve is not linear, particularly in
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the range of 0–0.5 ms, indicating that these molecules un-

dergo anomalous diffusion. These plots should be compared

with those in Fig. 3 b, where the first point is at 66 ms (the first

point in the MSD-Dt curve is removed, because all of the

high-frequency noise components are accumulated in the first

point in the MSD-Dt plot). Note that in the MSD-Dt plots

shown in Fig. 6 b, the main curvature is seen between 0 and

0.5 ms, and the MSD value at 0.5 ms is only 0.0004–0.001

mm2.

These ensemble-averaged MSD-Dt plots were fitted with a

theoretical equation representing hop diffusion over equally

spaced, semipermeable barriers (52). The fit parameters in-

cluded L, Dmicro, and DMACRO (due to the lack of time

resolution or insufficient frame rate, even at 50,000 frames

per second for the compartment size of ;40 nm, the correct

Dmicro cannot be obtained). For further details of the analysis,

see Classification of the Mode of Diffusion, Calculation of

the Diffusion Coefficient, and Analysis of High-Speed SPT

Trajectories. The following hop parameters were obtained

from this fitting. For TM-I-Ek: L ¼ 52 nm and DMACRO ¼
0.12 mm2/s. For GPI-I-Ek: L ¼ 36 nm and DMACRO ¼ 0.086

mm2/s. For DOPE, L ¼ 50 nm and DMACRO ¼ 0.13 mm2/s.

These should be compared with the data shown later in Fig. 8

and Table 2. It is interesting to find that DMACRO for GPI-I-Ek

are smaller than that for TM-I-Ek or DOPE. Since SFMT with

fluorescent probes, which do not induce aggregation of the

target molecules, exhibited more or less similar DMACRO for

all of the three molecules (Figs. 3 and 5; also see Table 2), this

suggests the readiness of GPI-I-Ek for being crosslinked with

gold particles. Therefore, although DMACRO for GPI-I-Ek is

slightly greater than that for TM-I-Ek or DOPE, GPI-I-Ek

molecules might have greater tendency to associate with each

other.

A statistical classification of each individual trajectory into

the categories of simple Brownian, confined-hop, and di-

rected diffusion was carried out, as described in Fig. 4 and the

related text, and shown in Fig. 7. Here all of the analyzed

trajectories are 5000 frames’ long (100 ms), and for each

trajectory, MSD-Dt was calculated from all of the possible

combinations of any two points in the trajectories, to produce

MSD-Dt for the full timescales of 2, 5, and 8 ms (100, 250,

and 400 points). These results indicated that 75–89% of the

TM-I-Ek, GPI-I-Ek, and DOPE molecules undergo confined-

hop diffusion, which was totally missed in the observations

made at video rate.

The MSD-Dt plot for each trajectory (between 0 and 5 ms)

was fitted with a theoretical equation representing hop dif-

fusion over equally spaced, semipermeable barriers (52), as

described above. The compartment size L and the macro-

FIGURE 6 TM-I-Ek, GPI-I-Ek, and DOPE, tagged with gold particles and

observed at a 20-ms resolution, exhibited hop diffusion. (a) Representative

40-ms trajectories (containing 2000 determined coordinates) of TM-I-Ek,

GPI-I-Ek, and DOPE. Each color (purple, cyan, green, orange, red, and then

back to purple and so on; this sequence was always used in this article)

represents a plausible compartment detected by computer software (5). The

residency time within each compartment is shown and is color-coordinated

with respective compartment. The numbers in the square brackets indicate the

order of the compartments the molecules entered. In the Gold-GPI-I-Ek and

Gold-DOPE trajectories, due to repeated entrance into the same compart-

ments, the continuous trajectories of GPI-I-Ek and DOPE were shown in two

separate trajectories placed side-by-side for the viewability, whereas the

overall trajectories except for the portions shown in colored trajectories are

displayed in gray lines. When repeated passages across the same compartment

took place in these trajectories, the compartment is numbered by two

numbers. These results suggest that the compartments move slightly even

during 2–20 ms. (b) Ensemble-averaged MSD-Dt plots. Mean-square dis-

placement (MSD) of TM-I-Ek, GPI-I-Ek, and DOPE tagged with gold

particles observed at a 20-ms resolution, averaged over all copies of molecules

examined here. (Red) TM-I-Ek. (Green) GPI-I-Ek. (Blue) DOPE. The MSD

corrected for the single-step noise was obtained as described in the caption to

Fig. 3 b. The error bar for each ensemble-averaged MSD(Dt) represents the

standard error. These plots were fitted with theoretical curves representing

hop diffusion over equally spaced, semipermeable barriers (52). For further

details of the analysis, see Suzuki et al. (19). For the plots for TM-I-Ek and

DOPE, due to the overlap of the points, only half of the experimentally

obtained points for these molecules are alternatingly plotted. The smaller

long-term slope for GPI-I-Ek is likely due to the greater tendency of GPI-I-Ek

clustering beneath the gold-particle probes (see the text).
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scopic diffusion coefficient were the fit parameters, and the

average residency time over a single trajectory was calculated

from L and DMACRO (L2/4DMACRO).

Fig. 8 shows the distributions of the compartment sizes and

the residency times within each compartment, determined for

each trajectory. There were no significant differences in the

compartment sizes sensed by the three molecules (medians,

;40 nm). The median residency times were 4–7 ms, but note

that these values are for gold-tagged molecules, which might

be crosslinked by the gold probes. The correct values for the

ensemble-averaged residency times of these three molecules

were estimated in the following manner (the correct values

for each individual molecule could not be determined).

Recently, Morone et al. (27) succeeded in directly deter-

mining the mesh size of the membrane skeleton on the cy-

toplasmic surface of the plasma membrane, by determining

the three-dimensional structure of the membrane skeleton

using electron tomography. They found that the compartment

sizes determined by the high-speed diffusion measurements

of gold-tagged molecules (crosslinked at various degrees,

depending on the molecule under investigation) agreed well

with the mesh size of the membrane skeleton on the cyto-

plasmic surface of the plasma membrane. From this agree-

ment, it can be deduced that high-speed SPT of gold probes

provides the correct compartment size. However, SPT may

not give the correct hop rate, due to the crosslinking by gold

particles. In contrast, Alexa594-labeled molecules would

give more correct macroscopic diffusion rates over many

compartments, whereas the low time resolution of SFMT

does not allow direct observations of the hop events and the

compartment size. Therefore, the correct hop rate (averaged

value) can be estimated using the median Deff(33ms)100ms of

Alexa594-labeled molecules and the median compartment

sizes obtained by using gold-labeled molecules. The median

residency times are 3.2 ms for TM-I-Ek ([0.042 mm]2/4 3

0.14 mm2/s), 1.4 ms for GPI-I-Ek, and 2.9 ms for DOPE

TABLE 2 Compartment size, residency time, effective macroscopic diffusion coefficient (Deff(33ms)100ms) (median (mean 6 SE)), and

probability of passing a barrier (PP)

SPT SFMT

Drug

Confined-

hop (%)

Compartment

size (nm)

Deff(20ms)20ms

(mm2/s)

Deff(33ms)100ms

(mm2/s)

Deff(33ms)100ms

(mm2/s)

Corrected residency

time (t, ms)§ PPk

TM-I-Ek

— 80 42 0.045 0.044 0.14 3.2 0.0087

(53 6 5) (0.090 6 0.017) (0.081 6 0.012) (0.15 6 0.015)

Lat-Ay 95 66 0.076 0.066 0.24 4.5 0.0096

(76 6 6) (0.11 6 0.019) (0.095 6 0.011) (0.25 6 0.015)

Cyt-Dz 97 45 0.039 0.036 — — —

(61 6 7) (0.11 6 0.026) (0.085 6 0.019)

GPI-I-Ek

— 75 36 0.046 0.032 0.23 1.4 0.014

(41 6 3) (0.057 6 0.0064) (0.040 6 0.0053) (0.33 6 0.030)

Lat-Ay 82 52 0.066 0.044 0.31 2.2 0.014

(64 6 7) (0.13 6 0.020) (0.058 6 0.0063) (0.34 6 0.033)

Cyt-Dz 79 32 0.031 0.035 — — —

(34 6 2) (0.047 6 0.0086) (0.047 6 0.0065)

DOPE

— 86 42 0.045 0.061 0.15 2.9 0.0080

(50 6 4) (0.095 6 0.018) (0.088 6 0.019) (0.15 6 0.015)

Lat-Ay 97 64 0.10 0.12 0.21 4.9 0.0074

(83 6 10) (0.14 6 0.028) (0.15 6 0.022) (0.22 6 0.018)

Cyt-Dz 97 46 0.037 0.040 — — —

(50 6 4) (0.073 6 0.016) (0.066 6 0.015)

Cyt-D{ 100 44 0.034 0.028 — — —

(50 6 4) (0.049 6 0.0086) (0.042 6 0.0085)

For SPT observations, 39–61 particles were measured, whereas for SFMT, 62–112 molecules were observed, for specimens under different conditions.
y1 mM latrunculin A, 5–20 min treatment.
z10 mM cytochalasin D, 2–12 min treatment.
{10 mM cytochalasin D, 1–5 min treatment.
§The residency time was calculated using Deff(33ms)100ms (median), obtained from SFMT observations, and the compartment size (L, median), obtained from

SPT using the equation t ¼ L2/4Deff(33ms)100ms.
kPP ¼ RDRL/(RD(2RL�1)11) is the probability of passing a barrier when the membrane molecules are already at the boundary (a parameter for the diffusion

in one dimension), where RD ¼ Dmicro/DMACRO and RL ¼ I/L. I is the average distance traveled per frame, which is ¼ (2Dmicro 3 20 ms)1/2 (52). As Dmicro,

we used 8 mm2/s for DOPE (5,6) and GPI-I-Ek, and 6 mm2/s for TM-I-Ek ((19); see text). Fujiwara et al. (5) and Murase et al. (6) showed that Dmicro for

DOPE inside a compartment is the same for NRK and FRSK cells, which have very different compartment sizes, suggesting that the Dmicro values in any cell

membrane are probably similar to each other. As DMACRO, we employed Deff(33ms)100ms.
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(indicated in parentheses in Fig. 8 and listed in Table 2). In

summary, all of the molecules we examined here exhibited

rapid hop diffusion between ;40-nm compartments, with a

dwell time of 1–3 ms in each compartment on average.

Confinement within f ; 80 nm domains for several 10s of

milliseconds was never observed for any single molecule

inspected in this study.

A useful parameter, which can be calculated from DMACRO,

Dmicro, and the compartment size, as described by Powles

et al. (52) and Murase et al. (6), is the probability of passing

a barrier when the membrane molecules are already at the

boundary (PP). This shows how easily a molecule in the

plasma membrane at a compartment boundary can pass

the barrier. As Dmicro, we used 8 mm2/s for DOPE (5,6) and

GPI-I-Ek (assuming that its microscopic diffusion coefficient

is the same as that for the phospholipid DOPE), and 6 mm2/s

for TM-I-Ek (based on 4.5–6 mm2/s by (19) for G-protein-

coupled receptor, which contains seven transmembrane

domains, and employing the upper-limit value for TM-I-Ek,

because it has only two transmembrane domains in the di-

meric structure). The PP value of GPI-I-Ek was approxi-

mately twofold larger than those for DOPE and TM-I-Ek

(Table 2). In other words, GPI-I-Ek tends to pass through the

barrier two-times more readily than TM-I-Ek and DOPE. The

mechanism underlying this greater hop probability for the

GPI-anchored protein is unknown.

The actin-based membrane skeleton
is responsible for cell
membrane compartmentalization

We have examined the effects of drugs that affect actin or-

ganization on the diffusion of TM-I-Ek, GPI-I-Ek, and DOPE

in the plasma membrane. CHO cells were incubated in the

observation medium containing latrunculin A (final 1 mM) on

the microscope stage at 37�C for 5 min. To avoid the sec-

ondary and/or large-scale drug effects, microscope observa-

tions were completed within 20 min after the drug addition.

The latrunculin A treatment induced slight decreases in the

rhodamine-stainable actin filaments visible by fluorescence

microscopy (see our Supplementary Material, Data S1, Fig.

S1, row b). Fig. 9 (red open bars) shows the distributions of

the compartment sizes and the apparent residency times

FIGURE 8 At a 20-ms resolution (with gold probes), TM-I-Ek, GPI-I-Ek,

and DOPE exhibited rapid hop diffusion between ;40-nm compartments

with a median dwell time of 4–7 ms in each compartment. The distributions

of compartment sizes and the apparent residency times for TM-I-Ek (red),

GPI-I-Ek (green), and DOPE (blue). The compartment size L was obtained

by fitting the MSD-Dt plot for each trajectory with a theoretical curve for hop

diffusion (52), and the residency time was calculated from L and DMACRO,

also obtained from the curve fitting (L2/4DMACRO). Color-coordinated

arrows and numbers show medians of respective distributions. All three

gold-particle-tagged molecules exhibited similar compartment sizes and

residency times within a compartment. These residency times are prolonged

due to cross-linking by gold probes. The ‘‘corrected’’ residency time can be

evaluated by using the macroscopic diffusion rate of a fluorescently-tagged

molecule (median value) and the compartment size obtained by a gold-

tagged molecule (median value), and is listed in Table 2. The numbers in the

parentheses indicate the ‘‘corrected’’ residency times.

FIGURE 7 The distributions of RD(N, n) for TM-I-Ek,

GPI-I-Ek, and DOPE tagged with gold particles observed at

a 20-ms resolution. The distributions of RD(N, n) for TM-I-

Ek, GPI-I-Ek, and DOPE (second to bottom rows) are quite

different from those expected from simple Brownian par-

ticles (generated by Monte Carlo stimulations, top row).

Here, N was fixed at 5000, and n was varied (100, 250, and

400 steps, corresponding to analysis time windows of 2, 5,

and 8 ms, respectively). For the classification of the

trajectories into different diffusion modes, RD(5000, n)

values that gave the 2.5 percentile of the particles from both

ends of the distribution for simulated simple Brownian

trajectories, referred to as RDmin(5000, n) and RDmax(5000,

n), shown by red and cyan vertical lines in all panels,

respectively, were used (16). When a particle exhibited an

RD(5000, n) smaller than RDmin(5000, n), its trajectory was

classified into the confined-hop diffusion mode. The per-

cent number (red) to the left of the red line indicated the

fraction of trajectories classified into the confined-hop

diffusion mode, showing that the majority of the TM-I-

Ek, GPI-I-Ek, and DOPE trajectories are classified into the

confined-hop diffusion mode.
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within each compartment, determined for each high-speed

SPT trajectory of TM-I-Ek, GPI-I-Ek, and DOPE after la-

trunculin A treatment. Under these conditions, larger com-

partments appeared, with the median diameter increased by a

factor of ;1.5, or the area by a factor of ;2.3. Meanwhile, the

apparent residency times (called ‘‘apparent’’ due to the use of

gold particle probes for high-speed SPT, which would

crosslink the target molecules, prolonging the residency time)

were not affected at a statistically meaningful level.

Under the same conditions, the macroscopic diffusion co-

efficients for fluorescently-tagged molecules were deter-

mined by SFMT at video rate (Fig. 10). Deff(33ms)100ms

(macroscopic diffusion coefficient) was increased by 30–70%

(p , 0.05; Fig. 10, red open bars). From these observations,

the averages of the corrected residency times and PP (prob-

ability of passing the barrier) were calculated, as summarized

in Table 2. The residency times increased, but the PP re-

mained about the same, suggesting that the latrunculin-

induced increases of the macroscopic diffusion are due to the

expansion of the compartments, rather than the increased

probability of passing the compartment boundaries (the in-

creases of the residency times would also probably be due to

the expanded compartments, which would decrease the fre-

quency of the molecule reaching the compartment boundaries,

rather than the increase in the probability of passing the fence).

The effect of cytochalasin D on the diffusion of
TM-I-Ek, GPI-I-Ek, and DOPE in CHO cells

We next examined the effects of another drug, cytochalasin

D. Its mode of action on actin organization is different from

that of latrunculin A. While latrunculin A binds to actin

monomers and blocks their polymerization, resulting in the

amount of actin filaments (53,54), cytochalasin D at micro-

molar concentrations binds to both the barbed and pointed

ends of actin filaments and prevents their further polymeri-

zation, as well as their interactions with other barbed-end

binding proteins (55).

While the treatment with 1 mM latrunculin A for 5–20 min

(all of the observations were conducted within 20 min after

latrunculin addition) strongly affected the molecular motion,

the treatment with 1 and 10 mM cytochalasin D for 2–12 min

influenced neither the compartment size nor the apparent

FIGURE 9 The distributions of the compartment sizes (left) and the

residency times (right) after latrunculin A or cytochalasin D treatment.

Latrunculin A (final 1 mM, observed between 5 and 20 min, red open bars)

or cytochalasin D (final 10 mM, observed between 2 and 12 min, cyan open

bars) was added to the cultured cells on the microscope stage (control: gray

bars). Arrowheads indicate median values. Upon the latrunculin A treat-

ment, larger compartments appeared, with the median diameter increased by

a factor of ;1.5, or the area by a factor of ;2.3 (the Wilcoxon statistical test

result, comparing treated and untreated cells; p , 0.05). Meanwhile, the

apparent residency times were not affected at a statistically meaningful level.

However, the treatment with cytochalasin D had no effect (all p . 0.05), as

reported previously using slower observation rates (1). These results indicate

the necessity for caution in interpreting the pharmacological data.

FIGURE 10 Latrunculin A treatment increased the effective macroscopic

diffusion coefficients, Deff(33ms)100ms, of TM-I-Ek, GPI-I-Ek, and DOPE,

tagged with Alexa594-Fab (red open bars, after the treatment; gray bars,

before the treatment). All of the observations were carried out between 5 and

20 min after the addition of 1 mM latrunculin A. Color-coordinated arrows

and numbers show medians of the respective Deff(33ms)100ms distributions.

The cyan line represents the lowest detectable mobile Deff(33ms)100ms of

0.007 mm2/s (defined in Fig. 5 a). Color-coordinated percent values shown

to the left of the cyan line in all panels represent the immobile fraction.

Latrunculin A treatment increased the effective macroscopic diffusion

coefficients of all three molecules (the Wilcoxon statistical test result

between treated and untreated cells; p , 0.05).
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residency time, under the conditions where the cells did not

round up, but the number of stress fibers was decreased and

actin clusters were formed (Fig. 9, cyan open bars, Data S1,

Fig. S1 rows c and d, and Table 2). These results, obtained at

a 20-ms resolution, are consistent with the report by Vrljic

et al. (1), showing no influence of cytochalasin D (for 30 min

or 60 min at 37�C with 1, 10, and 40 mM) on the movement of

TM-I-Ek and GPI-I-Ek at a 100-ms resolution.

DISCUSSION

We have observed the diffusion of single molecules of

the transmembrane TM-I-Ek and its GPI-anchored modified

form GPI-I-Ek, using high-speed SPT with gold probes and

SFMT with fluorescent probes. The results obtained in this

study are compared with the diffusion data of the same

molecules in the same cell type (CHO cells), previously re-

ported by Vrljic et al. (1,2) and Nishimura et al. (3).

SFMT observations at low frame rates

We found that the average Deff(33ms)100ms values for flu-

orescently-labeled TM-I-Ek, GPI-I-Ek, and DOPE at 37�C

are 0.15, 0.33, and 0.15 mm2/s, respectively (the medians are

0.14, 0.23, and 0.15 mm2/s, respectively). Vrljic et al. (1)

reported that the mean diffusion coefficients of TM-I-Ek and

GPI-I-Ek were 0.18 and 0.22 mm2/s, respectively, at a 100-ms

resolution at 22�C. Nishimura et al. (3) reported them to be

0.59 and 1.1 mm2/s, respectively, at a 15.4-ms resolution at

37�C. The diffusion coefficients of MHC class II proteins

and GPI-anchored proteins reported previously are summa-

rized in Table 1. The diffusion coefficients of transmembrane

MHC class II proteins exhibited broad distributions of 0.13 3

10�4–0.59 mm2/s. In addition, the reported diffusion coeffi-

cients of GPI-linked proteins are also broadly distributed

(0.0035–1.1 mm2/s). The recent results reported by Lenne et al.

((38); ;1.1 mm2/s) and Nishimura et al. ((3); 1.1 mm2/s) are the

largest in Table 1, whereas the values found in this study lie in

the middle of these distributions. The FCS used by Lenne et al.

(38) might be quite insensitive to slowly-diffusing or immobile

molecules, and thus the reported data might be skewed toward

fast-diffusing species (D . 0.1 mm2/s; for a review, see (56)).

Meanwhile, Vrljic et al. (1) and Nishimura et al. (3) measured

Deff(100ms)50–250ms and Deff(15.4ms)15.4ms, respectively,

which might be sensitive to high-frequency noise components

(see the Supplementary Material text 1 of (19)). In addition,

Vrljic et al. (2) noted that the diffusion coefficients slightly

depended on the fetal bovine serum used to culture the CHO

cells (see the Supplementary Material Fig. S1 of (2)), which

might partially explain these differences. Accordingly, it is

concluded that the effective diffusion coefficients of TM-I-Ek

and GPI-I-Ek found here are in general agreement with the data

presented by Vrljic et al. (1) and Nishimura et al. (3).

We found that GPI-I-Ek diffused 1.6-fold faster than

TM-I-Ek (p , 0.05, in the Wilcoxon test; Fig. 5 a), in agree-

ment with the previous observations (1,3,30–34). Meanwhile,

Shvartsman et al. (37) found the diffusion coefficient mea-

sured by FRAP for the GPI-linked modified form of influenza

hemagglutinin was slightly smaller than that for the native

transmembrane form. However, a simple comparison of our

results with the data reported by Shvartsman et al. (37) cannot

be done, because the native transmembrane hemagglutinin

is in a trimeric form, with raft-associating properties.

In the following, we address the three key questions we

posed in the introduction of this report.

Do GPI-anchored proteins actually undergo hop
diffusion if they are observed at higher
frame rates?

High-speed SPT at a 20-ms resolution, with the aid of SFMT

at video rate, revealed that all three of the molecules exam-

ined here, TM-I-Ek, GPI-I-Ek, and DOPE, undergo rapid hop

diffusion between 40-nm compartments, with an average

dwell time of 1–3 ms in each compartment in CHO cells.

However, these results are at variance with the data published

by Wieser et al. (35). They observed a GPI-anchored protein,

CD59, labeled with Alexa647-Fab in T24 cells using SFMT.

Their MSD-Dt plots contained only six points on the time-

scale of 0–6 ms, whereas we have 250 points on the timescale

of 0–5 ms (Fig. 6 b). They stated that the MSD-Dt plot for

CD59, extrapolated to time 0 from the linear region, gave the

y intercept of ;0, and concluded that CD59 intrinsically

undergoes slow simple Brownian diffusion. The data in Fig.

6 b suggest that it would be very difficult to find the correct y
intercept with only six points, given the large single-molecule

tracking errors (see the error bars in Fig. 6 b).

Does GPI-I-Ek and not TM-I-Ek exhibit
confinement within 80-nm or 700-nm domains for
several 10s of milliseconds or longer?

Previously, Schütz et al. (36), as well as Lenne et al. (38) and

Wenger et al. (39), suggested that raft-associating molecules

exhibit confinement within 700-nm (36) and 80-nm domains

(38,39) for several 10s of milliseconds or longer. Therefore,

in this study, we paid special attention to whether we could

find confinement with GPI-I-Ek, but not with TM-I-Ek. If

such confinement occurs, then it should be easily detectable

with our time resolution of 20 ms, because the trajectory

should contain stationary periods over 1000 image frames,

and the precision of our determination of the particle’s co-

ordinates is sufficiently high (16 nm). However, we have

never seen such a trajectory in our SPT observations. Fur-

thermore, we failed to see any immobilized particles

(throughout the observation period of 100 ms).

Instead, we found that virtually all of the molecules we

observed undergo hop diffusion, indicating that the entire

plasma membrane of the CHO cell is parceled up into ap-

posed domains of ;40 nm, with regard to the translational
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diffusion of GPI-I-Ek, TM-I-Ek, and DOPE. These molecules

undergo short-term confined diffusion within these 40-nm

compartments for 1–3 ms on average, and long-term hop

diffusion between these compartments, and thus undergo

macroscopic diffusion. Therefore, such macroscopic diffu-

sion was detected in observations with slow frame rates as

slow simple Brownian diffusion, characterized by an effec-

tive macroscopic diffusion coefficient of 0.14–0.23 mm2/s.

The residency times, compartment sizes, and probabilities

of passing barrier (PP) of GPI-anchored proteins are similar

to those found for transmembrane proteins and DOPE

(summarized in Table 2). Given that ;35–50% of GPI-I-Ek,

;5–25% of TM-I-Ek, and nearly 0% of DOPE were found in

the Triton X-100-resistant fractions (1,57,58), these results

suggest that either the raft association affects the diffusion of

membrane molecules only slightly or the raft domain might

be very small and/or short-lived.

Does the treatment of cells with drugs that affect
actin polymerization, such as cytochalasin D and
latrunculin A, induce changes in the diffusion of
GPI-anchored proteins?

Vrljic et al. (1,2) and Nishimura et al. (3) previously failed to

detect any changes in the diffusion characteristics, after the

cells were treated with cytochalasin D. Furthermore, Frick

et al. (59) and Schmidt and Nichols (60) found that the dis-

ruption of the actin cytoskeleton by treating the cells with

latrunculin A, gelsolin, or siRNA of spectrin had no detectable

effect on the diffusion of membrane molecules by FRAP.

Therefore, in this investigation, the effects of both la-

trunculin A and cytochalasin D on the translational diffusion

of GPI-I-Ek, TM-I-Ek, and DOPE were examined. Consistent

with the results by Vrljic et al. (1) and Nishimura et al. (3),

cytochalasin D treatments, under the conditions where the

global cell morphology is not seriously affected, did not induce

any changes in the diffusion of the three molecules examined

here. In contrast, in the high-speed SPT experiments by

Murase et al. (6), cytochalasin D greatly affected the com-

partment size in the fetal rat skin keratinocyte cells in culture.

The effect of cytochalasin D on the diffusion of membrane

molecules is complex, probably because it depends on the

level of actin expression as well as the feedback reactions of

the cell (summarized in the On-line Supporting Information

of (20,44), and Supplementary Materials of (19)). The cell

could react to the loss of the links between the plasma

membrane and the actin filaments, due to the barbed-end

capping by cytochalasin D, by generating more actin fila-

ments. This might compensate for the initial effect of cyto-

chalasin D. Such compensation effects should always be

considered in any study modulating actin filaments (59,60).

Therefore, these results indicate that due caution is required

for interpreting the pharmacological data.

The cell treatment with another actin-depolymerizing

drug, latrunculin A, increased the compartment size for all

three molecules examined in this study, without affecting the

probability of passing the barrier when the membrane mol-

ecule was already in the boundary area between the com-

partments. This suggested that the actin-based membrane

skeleton is responsible for the partitioning of the plasma

membrane for the translational diffusion of both transmem-

brane and GPI-anchored proteins. This explains the ;50%

increase in the median macroscopic diffusion coefficient after

the latrunculin treatment for all three molecules. Further-

more, it should be emphasized that such changes are

observable only under well-controlled conditions: 1 mM

latrunculin A and only during 5–20 min after the drug ad-

dition. Milder treatments had much milder effects, whereas

harsher treatments would elicit compensating reactions of the

cell or harm the cells.

Small changes in the macroscopic diffusion coefficient,

such as a ;50% increase in its median value, would be dif-

ficult to detect with normal SFMT at low frame rates, with a

few observed points in the MSD-Dt plot, or with techniques

observing ensemble-averaged values. In this study, SFMT at

video rate for 1 s (30 observed points in the MSD-Dt plot, see

Fig. 3 b) was combined with high-speed SPT. This combi-

nation allows sensitive detection of the changes in the dif-

fusion of membrane molecules, upon drug addition.

In conclusion, all three of the molecules, GPI-I-Ek, TM-I-Ek,

and DOPE, undergo hop diffusion in the plasma membrane,

which is sensitive to changes in the actin-based membrane

skeleton. The compartment size for these molecules is the

same (;40 nm). This result supports the fence and picket

models. Meanwhile, the residency time for GPI-I-Ek is 1.4 ms

(median), which is approximately twofold shorter than those

for TM-I-Ek (3.2 ms) and DOPE (2.9 ms). Namely, GPI-I-Ek

hops faster than TM-I-Ek or DOPE. The reason for the faster

hop rate for GPI-I-Ek is still unknown.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this
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