4,320 research outputs found

    Weibel instability and associated strong fields in a fully 3D simulation of a relativistic shock

    Get PDF
    Plasma instabilities (e.g., Buneman, Weibel and other two-stream instabilities) excited in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a new 3-D relativistic particle-in-cell code, we have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. The simulation has been performed using a long simulation system in order to study the nonlinear stages of the Weibel instability, the particle acceleration mechanism, and the shock structure. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic (HD) like shock structure. In the leading shock, electron density increases by a factor of 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. We discuss the possible implication of our simulation results within the AGN and GRB context.Comment: 4 pages, 3 figures, ApJ Letters, in pres

    Renormalized parameters and perturbation theory for an n-channel Anderson model with Hund's rule coupling: Asymmetric case

    Full text link
    We explore the predictions of the renormalized perturbation theory for an n-channel Anderson model, both with and without Hund's rule coupling, in the regime away from particle-hole symmetry. For the model with n=2 we deduce the renormalized parameters from numerical renormalization group calculations, and plot them as a function of the occupation at the impurity site, nd. From these we deduce the spin, orbital and charge susceptibilities, Wilson ratios and quasiparticle density of states at T=0, in the different parameter regimes, which gives a comprehensive overview of the low energy behavior of the model. We compare the difference in Kondo behaviors at the points where nd=1 and nd=2. One unexpected feature of the results is the suppression of the charge susceptibility in the strong correlation regime over the occupation number range 1 <nd <3.Comment: 9 pages, 17 figure

    Particle Acceleration, Magnetic Field Generation, and Associated Emission in Collisionless Relativistic Jets

    Full text link
    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The ``jitter'' radiation from deflected electrons has different properties than synchrotron radiation which assumes a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.Comment: 4 pages, 3 figures, contributed talk at the workshop: High Energy Phenomena in Relativistic Outflows (HEPRO), Dublin, 24-28 September 2007. Fig. 3 is replaced by the correct versio

    GRB spectral parameters within the fireball model

    Full text link
    Fireball model of the GRBs predicts generation of numerous internal shocks, which then efficiently accelerate charged particles and generate magnetic and electric fields. These fields are produced in the form of relatively small-scale stochastic ensembles of waves, thus, the accelerated particles diffuse in space due to interaction with the random waves and so emit so called Diffusive Synchrotron Radiation (DSR) in contrast to standard synchrotron radiation they would produce in a large-scale regular magnetic fields. In this paper we present first results of comprehensive modeling of the GRB spectral parameters within the fireball/internal shock concept. We have found that the non-perturbative DSR emission mechanism in a strong random magnetic field is consistent with observed distributions of the Band parameters and also with cross-correlations between them; this analysis allowed to restrict GRB physical parameters from the requirement of consistency between the model and observed distributions.Comment: 14 pages, 17 figures, MNRAS in pres

    Landau damping of partially incoherent Langmuir waves

    Full text link
    It is shown that partial incoherence, in the form of stochastic phase noise, of a Langmuir wave in an unmagnetized plasma gives rise to a Landau-type damping. Starting from the Zakharov equations, which describe the nonlinear interaction between Langmuir and ion-acoustic waves, a kinetic equation is derived for the plasmons by introducing the Wigner-Moyal transform of the complex Langmuir wave field. This equation is then used to analyze the stability properties of small perturbations on a stationary solution consisting of a constant amplitude wave with stochastic phase noise. The concomitant dispersion relation exhibits the phenomenon of Landau-like damping. However, this damping differs from the classical Landau damping in which a Langmuir wave, interacting with the plasma electrons, loses energy. In the present process, the damping is non-dissipative and is caused by the resonant interaction between an instantaneously-produced disturbance, due to the parametric interactions, and a partially incoherent Langmuir wave, which can be considered as a quasi-particle composed of an ensemble of partially incoherent plasmons.Comment: 12 page

    Magnetic-field dependence of antiferromagnetic structure in CeRh1-xCoxIn5

    Full text link
    We investigated effects of magnetic field H on antiferromagnetic (AF) structures in CeRh_{1-x}Co_xIn_5 by performing the elastic neutron scattering measurements. By applying H along the [1,-1,0] direction, the incommensurate AF state with the propagation vector of q_{h1}=(1/2,1/2,0.297) observed at H=0 is replaced by the commensurate AF state with the q_{c2} = (1/2, 1/2, 1/4) modulation above 2 T for x=0.23, while the AF states with the q_{c1}=(1/2,1/2,1/2) and q_{h2}=(1/2,1/2,0.42) modulations seen at H=0 change into a single q_{c1}-AF state above ~1.6 T for x=0.7. These results suggest the different types of AF correlation for Co concentrations of 0.23 and 0.7 in an applied magnetic field H.Comment: 4 pages, 2 figures, to appear in the proceedings of ICM2009 (Karlsruhe, Germany
    • …
    corecore