259 research outputs found

    Monoamine oxidase (MAO) inhibitory effects of candidate MAO inhibitors found in cigarette smoke.

    Get PDF
    There is strong evidence that tobacco smoke inhibits both MAO A and MAO B isoforms in the body. However, which components of cigarette smoke are responsible for MAO inhibition is not clear yet. Our group has identified six previously unidentified candidate MAO inhibitors from the tobacco smoke. The MAO inhibitory effects of these candidate inhibitors were compared with that of nicotine and TPM (Tobacco Particulate Matter). An SH-SY5Y cell line was exposed to different regimens of ethanol (control), nicotine, TPM and the cocktail of candidate inhibitors. A final concentration 0.2 μM nicotine was used and the concentration of each candidate inhibitor was relative to that originally found in TPM. We found that nicotine did not have any significant MAO inhibitory effect compared to the control. TPM inhibited overall MAO activity by 39%, while the MAO inhibition by cocktail of candidate inhibitors was 47%. The results suggest that the candidate inhibitors identified by our group are the major contributors to the total MAO inhibitory activity depicted by cigarette smoke and potentially unlocks the mystery behind the components responsible for MAO inhibition by cigarette smoke in smokers

    Self-organization in dc glow microdischarges in krypton: modelling and experiments

    Get PDF
    Self-organized patterns of cathodic spots have been observed in microdischarges operated in xenon, but not in other gases. However, modelling has indicated that it is, in principle, possible to observe the patterns of spots in discharges operated in other gases provided that experimental conditions, in particular pressure, are right. In this work, self-organized patterns of cathodic spots are for the first time observed in dc glow microdischarges operated in a gas other than xenon: krypton. The experiments have been guided by the modelling. According to both the experiment and the modelling, patterns in krypton are similar to those found earlier in xenon, however occur at higher pressures.info:eu-repo/semantics/publishedVersio

    Signature of structural distortion in optical spectra of YFe2O4 thin film

    Full text link
    We report structural, optical, and electro-optical properties of polycrystalline YFe2O4 thin films, deposited on (0001) sapphire substrates using the electron-beam deposition technique. The optical spectra of a 120 nm YFe2O4 show Fe d to d on-site and O 2p to Fe 3d, Y 4d, and Y 5s charge-transfer electronic excitations. Anomalies in the temperature dependence data of the charge-transfer excitations and the splitting of the 4.46 eV charge-transfer peak strongly suggest a structural distortion at 180 ± 10 K. Evidence of such a structural distortion is also manifested in the surface resistance versus temperature data. In addition, the YFe2O4 thin film at low temperatures shows strong electro-optical properties, as high as 9% in the energy range of 1 - 2.5 eV, for applied electric fields up to 500 V.cm−1

    Robust Odd-Parity Superconductivity in the Doped Topological Insulator NbₓBi₂Se₃

    Get PDF
    We present resistivity and magnetization measurements on proton-irradiated crystals demonstrating that the superconducting state in the doped topological insulator NbxBi2Se3 (x=0.25) is surprisingly robust against disorder-induced electron scattering. The superconducting transition temperature TC decreases without indication of saturation with increasing defect concentration, and the corresponding scattering rates far surpass expectations based on conventional theory. The low-temperature variation of the London penetration depth Δλ(T) follows a power law [Δλ(T)T2] indicating the presence of symmetry-protected point nodes. Our results are consistent with the proposed robust nematic Eu pairing state in this material

    The Atacama Cosmology Telescope: The polarization-sensitive ACTPol instrument

    Get PDF
    The Atacama Cosmology Telescope (ACT) is designed to make high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3 degree field of view, 100 mK cryogenics with continuous cooling, and meta material anti-reflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev-Zel'dovich and kinetic Sunyaev-Zel'dovich signals, and CMB lensing due to large scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems

    Patient and Public Engagement in Health Research: Learning from UK Ideas

    Get PDF
    One of the new ideas in health and social care research in the UK is around involving patients and the general public in all aspects of research. This paper led by seven MSc students from Manmohan Memorial Institute of Health Sciences in Nepal. They attended Bournemouth University modules as part of the Erasmus+ exchange programme in 2022 and worked with two UK-based academics. The authors outline the thinking behind this process, and offer an example. They address its importance in improving the quality of the research as well as adding value to its societal relevanc

    Engineering shape anisotropy of Fe3O4-¿-Fe2O3 hollow nanoparticles for magnetic hyperthermia

    Get PDF
    The use of microwave-assisted synthesis (in water) of a-Fe2O3 nanomaterials followed by their transformation onto iron oxide Fe3O4-¿-Fe2O3 hollow nanoparticles encoding well-defined sizes and shapes [nanorings (NRs) and nanotubes (NTs)] is henceforth described. The impact of experimental variables such as concentration of reactants, volume of solvent employed, and reaction times/temperatures during the shape-controlled synthesis revealed that the key factor that gated generation of morphologically diverse nanoparticles was associated to the initial concentration of phosphate anions employed in the reactant mixture. All the nanomaterials presented were fully characterized by powder X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, Mössbauer spectroscopy, and superconducting quantum interference device (SQUID). The hollow nanoparticles that expressed the most promising magnetic responses, NTs and NRs, were further tested in terms of efficiencies in controlling the magnetic hyperthermia, in view of their possible use for biomedical applications, supported by their excellent viability as screened by in vitro cytotoxicity tests. These systems NTs and NRs expressed very good magneto-hyperthermia properties, results that were further validated by micromagnetic simulations. The observed specific absorption rate (SAR) and intrinsic loss power of the NRs and NTs peaked the values of 340 W/g and 2.45 nH m2 kg-1 (NRs) and 465 W/g and 3.3 nH m2 kg-1 (NTs), respectively, at the maximum clinical field 450 Oe and under a frequency of 107 kHz and are the highest values among those reported so far in the hollow iron-oxide family. The higher SAR in NTs accounts the importance of magnetic shape anisotropy, which is well-predicted by the modified dynamic hysteresis (ß-MDH) theoretical model
    corecore