37 research outputs found

    Modelling and experimental study on β-phase depletion behaviour of HVOF sprayed free-standing CoNiCrA1Y coatings during oxidation

    Get PDF
    This paper investigates the β-phase depletion behaviour during oxidation of free-standing CoNiCrA1Y (Co-31.7%Ni-20.8%Cr-8.1%A1-0.5%Y, all in wt%) bond coats prepared by high velocity oxy-fuel (HVOF) thermal spraying. The microstructure of the coatings was characterised using scanning electron microscopy with energy dispersive X-ray (EDX) analysis and electron backscatter diffraction (EBSD). It comprises a two phase structure of fcc γ-Ni and bcc β-NiA1, with grain sizes varying largely from 0.5 to 2 μm for both phases. Isothermal oxidation tests of the free-standing coatings were carried out at 1100 °C for times up to 250 h. The β phase depletion behaviour at the surface was measured and was also simulated using Thermo-Calc and DICTRA software. An A1 flux function derived from an oxide growth model was employed as the boundary condition in the diffusion model. The diffusion calculations were performed using the TTNi7 thermodynamic database together with the MOB2 mobility database. Reasonable agreement was achieved between the measured and the predicted element concentration and phase fraction profiles after various time periods. Grain boundary diffusion is likely to be important to element diffusion in this HVOF sprayed CoNiCrA1Y coating due to the sub-micron grains

    Investigation of method for Stainless Steel Welding Wire as a Replacement for Arc Wire Comsumables

    No full text
    Arc spraying as a coating method is being employed in various industrial applications as a part of maintenance service, and also as a surface engineering technique for many machine parts and components. The major cost in producing the arc spray coating is, however, based on the cost of the arc wire comsumables. This project was carried out to investigate the use of the commercially-available gas metal arc welding wire (GMAW wire) as a cheaper alternative to the special-purpose arc wire comsumables. The wire material chosen for this early study is the 316L stainless steel, due to its popularity in many applications as a built-up coating for worn parts. The physical properties of the coatings produced from the two sets of 316L stainless steel wire were determined to be different in the percentage of porosity and the oxide content. The mechanical properties, including the tensile bond strength and the wear rate of the coatings produced from the two types of sprayed wire, were also different. This will, in turn, result in a slight difference in the performance of thecoatings

    Sealing of thermally-sprayed stainless steel coatings against corrosion using nickel electroplating technique

    No full text
    Electric arc spraying (EAS) is one of the thermal spray techniques used for restoration and to providecorrosion resistance. It can be utilized to build up coatings to thicknesses of several millimeters, It is easy to use on-site. Most importantly, the cost of this technique is lower than other thermal spraying techniques thatmay be suitable for part restoration. A major disadvantage associated with the electric arc sprayed coating is its high porosity, which can be as high as 3-8% making it not appropriate for use in immersion condition. This work was carried out around the idea of using electroplating to seal off the pore of the EAS coating, with an aim to improve the corrosion resistance of the coating in immersion condition. This research compared the corrosion behavior of a stainless steel 316 electric arc sprayed coating in 2M NaOH solution at 25oC. It was found that the Ni plating used as sealant can improve the corrosion resistance of the EAS coating. Furthermore, the smoothened and plated stainless steel 316 coating has a better corrosion resistance than the plated EAS coating that was not ground to smoothen the surface before plating
    corecore