231 research outputs found

    Rydberg trimers and excited dimers bound by internal quantum reflection

    Full text link
    Quantum reflection is a pure wave phenomena that predicts reflection of a particle at a changing potential for cases where complete transmission occurs classically. For a chemical bond, we find that this effect can lead to non-classical vibrational turning points and bound states at extremely large interatomic distances. Only recently has the existence of such ultralong-range Rydberg molecules been demonstrated experimentally. Here, we identify a broad range of molecular lines, most of which are shown to originate from two different novel sources: a single-photon associated triatomic molecule formed by a Rydberg atom and two ground state atoms and a series of excited dimer states that are bound by a so far unexplored mechanism based on internal quantum reflection at a steep potential drop. The properties of the Rydberg molecules identified in this work qualify them as prototypes for a new type of chemistry at ultracold temperatures.Comment: 6 pages, 3 figures, 1 tabl

    Thermalization of coupled atom-light states in the presence of optical collisions

    Full text link
    The interaction of a two-level atomic ensemble with a quantized single mode electromagnetic field in the presence of optical collisions (OC) is investigated both theoretically and experimentally. The main accent is made on achieving thermal equilibrium for coupled atom-light states (in particular dressed states). We propose a model of atomic dressed state thermalization that accounts for the evolution of the pseudo-spin Bloch vector components and characterize the essential role of the spontaneous emission rate in the thermalization process. Our model shows that the time of thermalization of the coupled atom-light states strictly depends on the ratio of the detuning and the resonant Rabi frequency. The predicted time of thermalization is in the nanosecond domain and about ten times shorter than the natural lifetime at full optical power in our experiment. Experimentally we are investigating the interaction of the optical field with rubidium atoms in an ultra-high pressure buffer gas cell under the condition of large atom-field detuning comparable to the thermal energy in frequency units. In particular, an observed detuning dependence of the saturated lineshape is interpreted as evidence for thermal equilibrium of coupled atom-light states. A significant modification of sideband intensity weights is predicted and obtained in this case as well.Comment: 14 pages, 12 figures; the content was edite

    O Peer, Where Art Thou?:Uncovering Remote Peering Interconnections at IXPs

    Get PDF
    Internet eXchange Points (IXPs) are Internet hubs that provide the switching infrastructure to interconnect networks and exchange traffic. While the initial goal of IXPs was to bring together networks residing in the same city or country, and thus keep local traffic local, we observe that this model is gradually shifting. Many networks connect to IXPs without having physical presence at their switch(es). This practice, called Remote Peering, is changing the Internet topology and economy, and has become subject of a contentious debate within the network operators community. However, despite the increasing attention it is drawing, the understanding of the characteristics and impact of remote peering is limited. In this work, we remove the veil between remote peering and IXPs, by introducing and thoroughly validating a methodology for discovering remote peers at IXPs. We (i) infer remote peers globally, with high accuracy (>95%), (ii) study the evolution of remote peering in time, and (iii) evaluate its impact on Internet performance and resilience. We observe that remote peering is a significantly common practice in all the IXPs studied; for the largest IXPs, remote peers account for 40% of their member base. We also show that today IXP growth is mainly driven by remote peering, which contributes two times more than local peering

    Genome-wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass Miscanthus sinensis

    Get PDF
    Increasing demands for food and energy require a step change in the effectiveness, speed and flexibility of crop breeding. Therefore, the aim of this study was to assess the potential of genome-wide association studies (GWASs) and genomic selection (i.e. phenotype prediction from a genome-wide set of markers) to guide fundamental plant science and to accelerate breeding in the energy grass Miscanthus. We generated over 100 000 single-nucleotide variants (SNVs) by sequencing restriction site-associated DNA (RAD) tags in 138 Micanthus sinensis genotypes, and related SNVs to phenotypic data for 17 traits measured in a field trial. Confounding by population structure and relatedness was severe in naïve GWAS analyses, but mixed-linear models robustly controlled for these effects and allowed us to detect multiple associations that reached genome-wide significance. Genome-wide prediction accuracies tended to be moderate to high (average of 0.57), but varied dramatically across traits. As expected, predictive abilities increased linearly with the size of the mapping population, but reached a plateau when the number of markers used for prediction exceeded 10 000–20 000, and tended to decline, but remain significant, when cross-validations were performed across subpopulations. Our results suggest that the immediate implementation of genomic selection in Miscanthus breeding programs may be feasible

    Information and communications technologies (ICT) in Higher Education teaching – a tale of gradualism rather than revolution

    Get PDF
    The widespread adoption of information and communications technologies (ICT) in higher education (HE) since the mid 1990s has failed to produce the radical changes in learning and teaching than many anticipated. Activity theory and Rogers’ model of the adoption of innovations provide analytic frameworks that help develop our understanding of the actual impact of ICT upon teaching practices. This paper draws on a series of large-scale surveys carried out over a 10 year period with distance education tutors at the UK Open University to explore the changing role of ICT in the work of teachers. It investigates how HE teachers in one large distance learning university have, over time, appropriated ICT applications as teaching tools, and the gradual rather than revolutionary changes that have resulted

    Assessment and Student Learning – a fundamental relationship and the role of information and communication technologies

    Get PDF
    This paper reviews the role of assessment in student learning and its relationship with the use of information and communication technologies (ICT). There is ample evidence of technology-led innovations failing to achieve the transformations expected by educators. We draw upon existing research to illustrate the links between aspects of student learning, assessment practices and the use of ICT. Assessment influences not only what parts of a course get studied, but also how those parts are studied. While the adoption of ICT does not, in itself, change student behaviours, appropriately designed assessment that exploits the potential of ICT can change students’ approaches to learning. We argue that ICT can enable important learning outcomes to be achieved, but these must be underpinned by an assessment strategy that cues students to adopt a suitable approach to learning

    Formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics

    Full text link
    Progress on researches in the field of molecules at cold and ultracold temperatures is reported in this review. It covers extensively the experimental methods to produce, detect and characterize cold and ultracold molecules including association of ultracold atoms, deceleration by external fields and kinematic cooling. Confinement of molecules in different kinds of traps is also discussed. The basic theoretical issues related to the knowledge of the molecular structure, the atom-molecule and molecule-molecule mutual interactions, and to their possible manipulation and control with external fields, are reviewed. A short discussion on the broad area of applications completes the review.Comment: to appear in Reports on Progress in Physic

    Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Linkage maps are an integral resource for dissection of complex genetic traits in plant and animal species. Canonical map construction follows a well-established workflow: an initial discovery phase where genetic markers are mined from a small pool of individuals, followed by genotyping of selected mapping populations using sets of marker panels. A newly developed sequence-based marker technology, Restriction site Associated DNA (RAD), enables synchronous single nucleotide polymorphism (SNP) marker discovery and genotyping using massively parallel sequencing. The objective of this research was to assess the utility of RAD markers for linkage map construction, employing barley as a model system. Using the published high density EST-based SNP map in the Oregon Wolfe Barley (OWB) mapping population as a reference, we created a RAD map using a limited set of prior markers to establish linakge group identity, integrated the RAD and prior data, and used both maps for detection of quantitative trait loci (QTL).</p> <p>Results</p> <p>Using the RAD protocol in tandem with the Illumina sequence by synthesis platform, a total of 530 SNP markers were identified from initial scans of the OWB parental inbred lines - the "dominant" and "recessive" marker stocks - and scored in a 93 member doubled haploid (DH) mapping population. RAD sequence data from the structured population was converted into allele genotypes from which a genetic map was constructed. The assembled RAD-only map consists of 445 markers with an average interval length of 5 cM, while an integrated map includes 463 RAD loci and 2383 prior markers. Sequenced RAD markers are distributed across all seven chromosomes, with polymorphic loci emanating from both coding and noncoding regions in the <it>Hordeum </it>genome. Total map lengths are comparable and the order of common markers is identical in both maps. The same large-effect QTL for reproductive fitness traits were detected with both maps and the majority of these QTL were coincident with a dwarfing gene (<it>ZEO) </it>and the <it>VRS1 </it>gene, which determines the two-row and six-row germplasm groups of barley.</p> <p>Conclusions</p> <p>We demonstrate how sequenced RAD markers can be leveraged to produce high quality linkage maps for detection of single gene loci and QTLs. By combining SNP discovery and genotyping into parallel sequencing events, RAD markers should be a useful molecular breeding tool for a range of crop species. Expected improvements in cost and throughput of second and third-generation sequencing technologies will enable more powerful applications of the sequenced RAD marker system, including improvements in <it>de novo </it>genome assembly, development of ultra-high density genetic maps and association mapping.</p
    corecore