295 research outputs found

    Evolution of the magma system of Pantelleria (Italy) from 190 ka to present

    Get PDF
    The eruptive history of Pantelleria has been marked by the eruption of nine peralkaline ignimbrites, with inter-ignimbrite episodes from small, local volcanic centres. New whole-rock geochemical data are presented for seven ignimbrites and used with published data for younger units to track compositional changes with time. From»190 ka, silicicmagmatismwas dominated by comenditic trachyte to comendite compositions, evolving along generally similar liquid lines of descent (LLOD). The final ignimbrite, the Green Tuff (»46 ka), was tapped from a compositionally zoned pantelleritic upper reservoir to a trachytic mush zone. Younger (20–7 ka) silicic magmatism has been relatively small scale, with compositions similar to the earliest pre-Green Tuff pantelleritic ignimbrite (Zinedi). These data suggest that the comenditic reservoirs may have been emplaced at deeper levels than the pantelleritic reservoirs. While both types of series evolved along similar LLOD dominated by fractionation of alkali feldspar, it is the fractionation of iron that determines whether comendite or pantellerite is produced. The deeper reservoirs were more oxidizing and wetter, thus leading to the crystallization of magnetite and therefore the fractionation of iron

    Volcanological evolution of Pantelleria Island (Strait of Sicily) peralkaline volcano: a review

    Get PDF
    Pantelleria volcano has a particularly intriguing evolutionary history intimately related to the peralkaline composition of its explosively erupted magmas. Due to the stratigraphic complexity, studies over the last two decades have explored either only the pre-Green Tuff ignimbrite volcanism or the post-Green Tuff activity. We here focus on the whole evolutionary history, detailing the achievements since the first pioneering studies, in order to illustrate how the adoption and integration of progressively more accurate methods (40Ar/39Ar, paleomagnetism, petrography, and detailed field study) have provided many important independent answers to unresolved questions. We also discuss rheomorphism, a distinct feature at Pantelleria, at various scales and possible evidence for multiple, now hidden, caldera collapses. Although the evolutionary history of Pantelleria has shown that each ignimbrite event was followed by a period of less intense explosivity (as could be the present-day case), new geochronological and geochemical data may indicate a long-term waning of volcanic activity

    Family Structure and Child Behavior Problems in Australia, the United Kingdom, and the United States

    Get PDF
    A large body of literature suggests that children living with two married, biological parents on average have fewer behavior problems than those who do not. What is less clear is why this occurs. Competing theories suggest that resource deficiencies and parental selectivity play a part. We suggest that examining different contexts can help adjudicate among different theoretical explanations as to how family structure relates to child behavior problems. In this paper, we use data from the Growing Up in Australia: Longitudinal Study of Australian Children (LSAC), the UK Millennium Cohort Study (MCS), and the US Early Childhood Longitudinal Study (ECLS-K) to examine the relationship between family structure and child behavior problems. Specifically, we look at how living in several configurations of biological and social parents may relate to child behavior problems. Findings suggest both similarities and differences across the three settings, with explanations in the UK results favoring selectivity theories, US patterns suggesting that there is a unique quality to family structure that can explain outcomes, and the Australian results favoring resource theories

    Exact density profiles for fully asymmetric exclusion process with discrete-time dynamics

    Full text link
    Exact density profiles in the steady state of the one-dimensional fully asymmetric simple exclusion process on semi-infinite chains are obtained in the case of forward-ordered sequential dynamics by taking the thermodynamic limit in our recent exact results for a finite chain with open boundaries. The corresponding results for sublattice parallel dynamics follow from the relationship obtained by Rajewsky and Schreckenberg [Physica A 245, 139 (1997)] and for parallel dynamics from the mapping found by Evans, Rajewsky and Speer [J. Stat. Phys. 95, 45 (1999)]. By comparing the asymptotic results appropriate for parallel update with those published in the latter paper, we correct some technical errors in the final results given there.Comment: About 10 pages and 3 figures, new references are added and a comparison is made with the results by de Gier and Nienhuis [Phys. Rev. E 59, 4899(1999)

    Contrasting Styles of Inter-Caldera Volcanism in a Peralkaline System: Case Studies from Pantelleria (Sicily Channel, Italy)

    Get PDF
    The recent (\u3c190 ka) volcanic history of Pantelleria is characterized by the eruption of nine peralkaline ignimbrites, ranging in composition from comenditic trachyte to comendite to pantellerite. The ~46 ka Green Tuff (GT) was the last of these ignimbrites, which was followed by many effusive and explosive low-volume eruptions of pantellerite from vents within the caldera moat and along the caldera rim. Although recent studies have shed additional light on the age, petrochemistry, and volcanology of the older ignimbrites, there is very little knowledge of magmatism that occurred between these older ignimbrites, primarily due to the very scarce exposures. In this paper, we present new field descriptions and geochemical data for three local peralkaline centers never studied before, two pre-GT and one post-GT, which share a similar setting with respect to the caldera scarps but differ in terms of their age, composition, and eruptive style. These centers include: (i) the older (~125 ka) Giache center (comenditic trachyte), (ii) the ~67 ka Attalora center (comendite, pantellerite), and (iii) the younger (~14 ka) Patite center (pantellerite)

    Delineating reef fish trophic guilds with global gut content data synthesis and phylogeny

    Get PDF
    Understanding species' roles in food webs requires an accurate assessment of their trophic niche. However, it is challenging to delineate potential trophic interactions across an ecosystem, and a paucity of empirical information often leads to inconsistent definitions of trophic guilds based on expert opinion, especially when applied to hyperdiverse ecosystems. Using coral reef fishes as a model group, we show that experts disagree on the assignment of broad trophic guilds for more than 20% of species, which hampers comparability across studies. Here, we propose a quantitative, unbiased, and reproducible approach to define trophic guilds and apply recent advances in machine learning to predict probabilities of pairwise trophic interactions with high accuracy. We synthesize data from community-wide gut content analyses of tropical coral reef fishes worldwide, resulting in diet information from 13,961 individuals belonging to 615 reef fish. We then use network analysis to identify 8 trophic guilds and Bayesian phylogenetic modeling to show that trophic guilds can be predicted based on phylogeny and maximum body size. Finally, we use machine learning to test whether pairwise trophic interactions can be predicted with accuracy. Our models achieved a misclassification error of less than 5%, indicating that our approach results in a quantitative and reproducible trophic categorization scheme, as well as high-resolution probabilities of trophic interactions. By applying our framework to the most diverse vertebrate consumer group, we show that it can be applied to other organismal groups to advance reproducibility in trait-based ecology. Our work thus provides a viable approach to account for the complexity of predator-prey interactions in highly diverse ecosystems.Peer reviewe

    Kinetics and Identities of Extracellular Peptidases in Subsurface Sediments of the White Oak River Estuary, North Carolina

    Get PDF
    Anoxic subsurface sediments contain communities of heterotrophic microorganisms that metabolize organic carbon at extraordinarily low rates. In order to assess the mechanisms by which subsurface microorganisms access detrital sedimentary organic matter, we measured kinetics of a range of extracellular peptidases in anoxic sediments of the White Oak River Estuary, NC. Nine distinct peptidase substrates were enzymatically hydrolyzed at all depths. Potential peptidase activities (Vmax) decreased with increasing sediment depth, although Vmax expressed on a per-cell basis was approximately the same at all depths. Half-saturation constants (Km) decreased with depth, indicating peptidases that functioned more efficiently at low substrate concentrations. Potential activities of extracellular peptidases acting on molecules that are enriched in degraded organic matter (d-phenylalanine and l-ornithine) increased relative to enzymes that act on l-phenylalanine, further suggesting microbial community adaptation to access degraded organic matter. Nineteen classes of predicted, exported peptidases were identified in genomic data from the same site, of which genes for class C25 (gingipain-like) peptidases represented more than 40% at each depth. Methionine aminopeptidases, zinc carboxypeptidases, and class S24-like peptidases, which are involved in single-stranded-DNA repair, were also abundant. These results suggest a subsurface heterotrophic microbial community that primarily accesses low-quality detrital organic matter via a diverse suite of well-adapted extracellular enzymes. IMPORTANCE Burial of organic carbon in marine and estuarine sediments represents a long-term sink for atmospheric carbon dioxide. Globally, ĂąË†ÂŒ40% of organic carbon burial occurs in anoxic estuaries and deltaic systems. However, the ultimate controls on the amount of organic matter that is buried in sediments, versus oxidized into CO2, are poorly constrained. In this study, we used a combination of enzyme assays and metagenomic analysis to identify how subsurface microbial communities catalyze the first step of proteinaceous organic carbon degradation. Our results show that microbial communities in deeper sediments are adapted to access molecules characteristic of degraded organic matter, suggesting that those heterotrophs are adapted to life in the subsurface

    Social and Cultural Dynamics of Non-Native Invasive Species

    Get PDF
    Invasive species and their management represent a complex issue spanning social and ecological systems. Invasive species present existing and potential threats to the nature of ecosystems and the products and services that people receive from them. Humans can both cause and address problems through their complex interactions with ecosystems. Yet, public awareness of invasive species and their impact is highly uneven, and public support for management and control of invasive species can be variable. Public perceptions often differ markedly from the perspectives of concerned scientists, and perceptions and support for management are influenced by a wide range of social and ecological values. In this chapter, we present a broad survey of social science research across a diversity of ecosystems and stakeholders in order to provide a foundation for understanding the social and cultural dimensions of invasive species and plan more effective management approaches. This chapter also addresses tribal perspectives on invasive species, including traditional ecological knowledge, unique cultural dimensions for tribes, and issues critical to engaging tribes as partners and leaders in invasive species management. Recognizing that natural resource managers often seek to change people’s perceptions and behaviors, we present and discuss some promising approaches that are being used to engage human communities in ways that empower and enlist stakeholders as partners in management

    Developmental Changes in PON1 Enzyme Activity in Young Children and Effects of PON1 Polymorphisms

    Get PDF
    BackgroundParaoxonase 1 (PON1) is an enzyme that detoxifies activated organophosphorus pesticides (OPs) and is also involved in oxidative stress pathways.ObjectivesPON1 activity in newborns is lower than in adults, but the ontogeny of PON1 activity is poorly characterized in young children. We examined the effects of age and PON1 genotype on enzyme activity in a birth cohort of Mexican-American children.MethodsWe determined three substrate-specific measures of PON1 activity in 1,143 plasma samples collected longitudinally from 458 children at five time points from birth through 7 years of age, and genotyped PON1 polymorphisms at positions 192 and -108 in these children.ResultsContrary to previous reports that PON1 activities plateau by 2 years of age, we observed an age-dependent increase in all three PON1 measures from birth through 7 years of age (p < 0.0001). The PON1(192) genotype significantly modified the effect of age on paraoxonase (POase) activity (p < 0.0001) such that increases in enzyme activity with age were influenced by the number of R alleles in a dose-dependent manner. Children with the PON1(-108CC192RR) diplotype had significantly higher mean PON1 activities and also experienced steeper increases of POase activity over time compared with children with the PON1(-108TT192QQ) diplotype.ConclusionsLower levels of the PON1 enzyme, which is involved in protection against OPs and oxidative stress, persist in young children past 2 years of age through at least 7 years of age. Future policies addressing pesticide exposure in children should take into account that the window of vulnerability to OPs in young children may last beyond infancy

    Nutrient limitation, bioenergetics and stoichiometry: A new model to predict elemental fluxes mediated by fishes

    Full text link
    Energy flow and nutrient cycling dictate the functional role of organisms in ecosystems. Fishes are key vectors of carbon (C), nitrogen (N) and phosphorus (P) in aquatic systems, and the quantification of elemental fluxes is often achieved by coupling bioenergetics and stoichiometry. While nutrient limitation has been accounted for in several stoichiometric models, there is no current implementation that permits its incorporation into a bioenergetics approach to predict ingestion rates. This may lead to biased estimates of elemental fluxes.Here, we introduce a theoretical framework that combines stoichiometry and bioenergetics with explicit consideration of elemental limitations. We examine varying elemental limitations across different trophic groups and life stages through a case study of three trophically distinct reef fishes. Further, we empirically validate our model using an independent database of measured excretion rates.Our model adequately predicts elemental fluxes in the examined species and reveals species‐ and size‐specific limitations of C, N and P. In line with theoretical predictions, we demonstrate that the herbivore Zebrasoma scopas is limited by N and P, and all three fish species are limited by P in early life stages. Further, we show that failing to account for nutrient limitation can result in a greater than twofold underestimation of ingestion rates, which leads to severely biased excretion rates.Our model improved predictions of ingestion, excretion and egestion rates across all life stages, especially for fishes with diets low in N and/or P. Due to its broad applicability, its reliance on many parameters that are well‐defined and widely accessible, and its straightforward implementation via the accompanying r‐package fishflux, our model provides a user‐friendly path towards a better understanding of ecosystem‐wide nutrient cycling in the aquatic biome.A free Plain Language Summary can be found within the Supporting Information of this article.A free Plain Language Summary can be found within the Supporting Information of this article.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/5/fec13618_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/4/fec13618-sup-0002-AppendixS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/3/fec13618-sup-0001-Summary.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/2/fec13618-sup-0003-AppendixS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/1/fec13618.pd
    • 

    corecore