5 research outputs found

    Rediscovering the value of families for psychiatric genetics research

    Get PDF
    As it is likely that both common and rare genetic variation are important for complex disease risk, studies that examine the full range of the allelic frequency distribution should be utilized to dissect the genetic influences on mental illness. The rate limiting factor for inferring an association between a variant and a phenotype is inevitably the total number of copies of the minor allele captured in the studied sample. For rare variation, with minor allele frequencies of 0.5% or less, very large samples of unrelated individuals are necessary to unambiguously associate a locus with an illness. Unfortunately, such large samples are often cost prohibitive. However, by using alternative analytic strategies and studying related individuals, particularly those from large multiplex families, it is possible to reduce the required sample size while maintaining statistical power. We contend that using whole genome sequence (WGS) in extended pedigrees provides a cost-effective strategy for psychiatric gene mapping that complements common variant approaches and WGS in unrelated individuals. This was our impetus for forming the “Pedigree-Based Whole Genome Sequencing of Affective and Psychotic Disorders” consortium. In this review, we provide a rationale for the use of WGS with pedigrees in modern psychiatric genetics research. We begin with a focused review of the current literature, followed by a short history of family-based research in psychiatry. Next, we describe several advantages of pedigrees for WGS research, including power estimates, methods for studying the environment, and endophenotypes. We conclude with a brief description of our consortium and its goals.This research was supported by National Institute of Mental Health grants U01 MH105630 (DCG), U01 MH105634 (REG), U01 MH105632 (JB), R01 MH078143 (DCG), R01 MH083824 (DCG & JB), R01 MH078111 (JB), R01 MH061622 (LA), R01 MH042191 (REG), and R01 MH063480 (VLN).UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM)UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Biologí

    Validation study of MARCKSL1 as a prognostic factor in lymph node-negative breast cancer patients.

    No full text
    Protein expression of Myristoylated alanine-rich C kinase substrate like-1 (MARCKSL1) has been identified as a prognostic factor in lymph-node negative (LN-) breast cancer patients. We aim to validate MARCKSL1 protein expression as a prognostic marker for distant metastasis-free survival (DMFS) in a new cohort of LN- breast cancer patients. MARCKSL1 expression was evaluated in 151 operable T1,2N0M0 LN- breast cancer patients by immunohistochemistry. Median follow-up time was 152 months, range 11-189 months. Results were compared with classical prognosticators (age, tumor diameter, grade, estrogen receptor, and proliferation) using single (Kaplan-Meier) and multivariate (Cox model) survival analysis. Thirteen patients (9%) developed distant metastases. With both single and multiple analysis of all features, MARCKSL1 did not show a significant prognostic value for DMFS (p = 0.498). Of the assessed classical prognosticators, only tumor diameter showed prognostic value (hazard ratio 9.3, 95% confidence interval 2.8-31.0, p <0.001). MARCKSL1 expression could not be confirmed as a prognostic factor in this cohort. Possible reasons include changes in diagnostic and treatment guidelines between the discovery and validation cohorts. Further studies are needed to reveal the potential biological role of this protein in breast cancer

    Firefly: The Case for a Holistic Understanding of the Global Structure and Dynamics of the Sun and the Heliosphere

    No full text
    This white paper is on the HMCS Firefly mission concept study. Firefly focuses on the global structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the deciphering of the solar cycle, the conditions leading to the explosive activity, and the structure and dynamics of the corona as it drives the heliosphere
    corecore