136 research outputs found

    Does fire influence the landscape-scale distribution of an invasive mesopredator?

    Get PDF
    Predation and fire shape the structure and function of ecosystems globally. However, studies exploring interactions between these two processes are rare, especially at large spatial scales. This knowledge gap is significant not only for ecological theory, but also in an applied context, because it limits the ability of landscape managers to predict the outcomes of manipulating fire and predators. We examined the influence of fire on the occurrence of an introduced and widespread mesopredator, the red fox (Vulpes vulpes), in semi-arid Australia. We used two extensive and complimentary datasets collected at two spatial scales. At the landscape-scale, we surveyed red foxes using sand-plots within 28 study landscapes - which incorporated variation in the diversity and proportional extent of fire-age classes - located across a 104 000 km2 study area. At the site-scale, we surveyed red foxes using camera traps at 108 sites stratified along a century-long post-fire chronosequence (0-105 years) within a 6630 km2 study area. Red foxes were widespread both at the landscape and site-scale. Fire did not influence fox distribution at either spatial scale, nor did other environmental variables that we measured. Our results show that red foxes exploit a broad range of environmental conditions within semi-arid Australia. The presence of red foxes throughout much of the landscape is likely to have significant implications for native fauna, particularly in recently burnt habitats where reduced cover may increase prey species\u27 predation risk

    Landscape properties mediate the homogenization of bird assemblages during climatic extremes

    Full text link
    Extreme weather events, such as drought, have marked impacts on biotic communities. In many regions, a predicted increase in occurrence of such events will be imposed on landscapes already heavily modified by human land use. There is an urgency, therefore, to understand the way in which the effects of such events may be exacerbated, or moderated, by different patterns of landscape change. We used empirical data on woodlanddependent birds in southeast Australia, collected during and after a severe drought, to document temporal change in the composition of bird assemblages in 24 landscapes (each 100 km2) representing a gradient in the cover of native wooded vegetation (from 60% to <2%). We examined (a) whether drought caused region-wide homogenization of the composition of landscape bird assemblages, and (b) whether landscape properties influenced the way assemblages changed in response to drought. To quantify change, we used pairwise indices of assemblage dissimilarity, partitioned into components that represented change in the richness of assemblages and change in the identity of constituent species (turnover). There was widespread loss of woodland birds in response to drought, with only partial recovery following drought-breaking rains. Region-wide, the composition of landscape assemblages became more different over time, primarily caused by turnover-related differentiation. The response of bird assemblages to drought varied between landscapes and was strongly associated with landscape properties. The extent of wooded vegetation had the greatest influence on assemblage change: landscapes with more native vegetation had more stable bird assemblages over time. However, for the component processes of richness- and turnoverrelated compositional change, measures of landscape productivity had a stronger effect. For example, landscapes with more riparian vegetation maintained more stable assemblages in terms of richness. These results emphasize the importance of the total extent of native vegetation, both overall cover and that occurring in productive parts of the landscape, for maintaining bird communities whose composition is resistant to severe drought. While extreme climatic events cannot be prevented, their effects can be ameliorated by managing the pattern of native vegetation in anthropogenic landscapes, with associated benefits for maintaining ecological processes and human well-being

    Extinction risk of the world's freshwater mammals

    Get PDF
    The continued loss of freshwater habitats poses a significant threat to global biodiversity. We reviewed the extinction risk of 166 freshwater aquatic and semiaquatic mammals—a group rarely documented as a collective. We used the International Union for the Conservation of Nature Red List of Threatened Species categories as of December 2021 to determine extinction risk. Extinction risk was then compared among taxonomic groups, geographic areas, and biological traits. Thirty percent of all freshwater mammals were listed as threatened. Decreasing population trends were common (44.0%), including a greater rate of decline (3.6% in 20 years) than for mammals or freshwater species as a whole. Aquatic freshwater mammals were at a greater risk of extinction than semiaquatic freshwater mammals (95% CI –7.20 to –1.11). Twenty-nine species were data deficient or not evaluated. Large species (95% CI 0.01 to 0.03) with large dispersal distances (95% CI 0.03 to 0.15) had a higher risk of extinction than small species with small dispersal distances. The number of threatening processes associated with a species compounded their risk of extinction (95% CI 0.28 to 0.77). Hunting, land clearing for logging and agriculture, pollution, residential development, and habitat modification or destruction from dams and water management posed the greatest threats to these species. The basic life-history traits of many species were poorly known, highlighting the need for more research. Conservation of freshwater mammals requires a host of management actions centered around increased protection of riparian areas and more conscientious water management to aid the recovery of threatened species

    Testing the assumptions of the pyrodiversity begets biodiversity hypothesis for termites in semi-arid Australia

    Full text link
    Fire shapes the composition and functioning of ecosystems globally. In many regions, fire is actively managed to create diverse patch mosaics of fire-ages under the assumption that a diversity of post-fire-age classes will provide a greater variety of habitats, thereby enabling species with differing habitat requirements to coexist, and enhancing species diversity (the pyrodiversity begets biodiversity hypothesis). However, studies provide mixed support for this hypothesis. Here, using termite communities in a semi-arid region of southeast Australia, we test four key assumptions of the pyrodiversity begets biodiversity hypothesis (i) that fire shapes vegetation structure over sufficient time frames to influence species\u27 occurrence, (ii) that animal species are linked to resources that are themselves shaped by fire and that peak at different times since fire, (iii) that species’ probability of occurrence or abundance peaks at varying times since fire and (iv) that providing a diversity of fire-ages increases species diversity at the landscape scale. Termite species and habitat elements were sampled in 100 sites across a range of fire-ages, nested within 20 landscapes chosen to represent a gradient of low to high pyrodiversity. We used regression modelling to explore relationships between termites, habitat and fire. Fire affected two habitat elements (coarse woody debris and the cover of woody vegetation) that were associated with the probability of occurrence of three termite species and overall species richness, thus supporting the first two assumptions of the pyrodiversity hypothesis. However, this did not result in those species or species richness being affected by fire history per se. Consequently, landscapes with a low diversity of fire histories had similar numbers of termite species as landscapes with high pyrodiversity. Our work suggests that encouraging a diversity of fire-ages for enhancing termite species richness in this study region is not necessary

    Effects of time since fire on birds : how informative are generalized fire response curves for conservation management?

    Full text link
    Fire is both a widespread natural disturbance that affects the distribution of species and a tool that can be used to manage habitats for species. Knowledge of temporal changes in the occurrence of species after fire is essential for conservation management in fire-prone environments. Two key issues are: whether postfire responses of species are idiosyncratic or if multiple species show a limited number of similar responses; and whether such responses to time since fire can predict the occurrence of species across broad spatial scales. We examined the response of bird species to time since fire in semiarid shrubland in southeastern Australia using data from surveys at 499 sites representing a 100-year chronosequence. We used nonlinear regression to model the probability of occurrence of 30 species with time since fire in two vegetation types, and compared species\u27 responses with generalized response shapes from the literature. The occurrence of 16 species was significantly influenced by time since fire: they displayed six main responses consistent with generalized response shapes. Of these 16 species, 15 occurred more frequently in mid- or later-successional vegetation (&gt;20 years since fire), and only one species occurred more often in early succession (&lt;5 years since fire). The models had reasonable predictive ability for eight species, some predictive ability for seven species, and were little better than random for one species. Bird species displayed a limited range of responses to time since fire; thus a small set of fire ages should allow the provision of habitat for most species. Postfire successional changes extend for decades and management of the age class distribution of vegetation will need to reflect this timescale. Response curves revealed important seral stages for species and highlighted the importance of mid- to late-successional vegetation (&gt;20 years). Although time since fire clearly influences the distribution of numerous bird species, predictive models of the spatial distribution of species in fire-prone landscapes need to incorporate other factors in addition to time since fire.<br /

    Interspecific and geographic variation in the diets of sympatric carnivores: dingoes/wild dogs and red foxes in south-eastern Australia

    Get PDF
    Dingoes/wild dogs (Canis dingo/familiaris) and red foxes (Vulpes vulpes) are widespread carnivores in southern Australia and are controlled to reduce predation on domestic livestock and native fauna. We used the occurrence of food items in 5875 dingo/wild dog scats and 11,569 fox scats to evaluate interspecific and geographic differences in the diets of these species within nine regions of Victoria, south-eastern Australia. The nine regions encompass a wide variety of ecosystems. Diet overlap between dingoes/wild dogs and foxes varied among regions, from low to near complete overlap. The diet of foxes was broader than dingoes/wild dogs in all but three regions, with the former usually containing more insects, reptiles and plant material. By contrast, dingoes/wild dogs more regularly consumed larger mammals, supporting the hypothesis that niche partitioning occurs on the basis of mammalian prey size. The key mammalian food items for dingoes/wild dogs across all regions were black wallaby (Wallabia bicolor), brushtail possum species (Trichosurus spp.), common wombat (Vombatus ursinus), sambar deer (Rusa unicolor), cattle (Bos taurus) and European rabbit (Oryctolagus cuniculus). The key mammalian food items for foxes across all regions were European rabbit, sheep (Ovis aries) and house mouse (Mus musculus). Foxes consumed 6.1 times the number of individuals of threatened Critical Weight Range native mammal species than did dingoes/wild dogs. The occurrence of intraguild predation was asymmetrical; dingoes/wild dogs consumed greater biomass of the smaller fox. The substantial geographic variation in diet indicates that dingoes/wild dogs and foxes alter their diet in accordance with changing food availability. We provide checklists of taxa recorded in the diets of dingoes/wild dogs and foxes as a resource for managers and researchers wishing to understand the potential impacts of policy and management decisions on dingoes/wild dogs, foxes and the food resources they interact with

    What do you mean, ‘megafire’?

    Get PDF
    BACKGROUND : ‘Megafire’ is an emerging concept commonly used to describe fires that are extreme in terms of size, behaviour, and/or impacts, but the term’s meaning remains ambiguous. APPROACH : We sought to resolve ambiguity surrounding the meaning of ‘megafire’ by conducting a structured review of the use and definition of the term in several languages in the peer-reviewed scientific literature. We collated definitions and descriptions of megafire and identified criteria frequently invoked to define megafire. We recorded the size and location of megafires and mapped them to reveal global variation in the size of fires described as megafires. RESULTS : We identified 109 studies that define the term ‘megafire’ or identify a megafire, with the term first appearing in the peer-reviewed literature in 2005. Seventy-one (~65%) of these studies attempted to describe or define the term. There was considerable variability in the criteria used to define megafire, although definitions of megafire based on fire size were most common. Megafire size thresholds varied geographically from > 100–100,000 ha, with fires > 10,000 ha the most common size threshold (41%, 18/44 studies). Definitions of megafire were most common from studies led by authors from North America (52%, 37/71). We recorded 137 instances from 84 studies where fires were reported as megafires, the vast majority (94%, 129/137) of which exceed 10,000 ha in size. Megafires occurred in a range of biomes, but were most frequently described in forested biomes (112/137, 82%), and usually described single ignition fires (59% 81/137). CONCLUSION : As Earth’s climate and ecosystems change, it is important that scientists can communicate trends in the occurrence of larger and more extreme fires with clarity. To overcome ambiguity, we suggest a definition of megafire as fires > 10,000 ha arising from single or multiple related ignition events. We introduce two additional terms – gigafire (> 100,000 ha) and terafire (> 1,000,000 ha) – for fires of an even larger scale than megafires.DATA AVAILABILITY STATEMENT: A list of the references from which the data were extracted can be found in the Appendix A: Data sources. The data used in this study are openly available at zenodo.org: https://doi.org/10.5281/zenodo.6252145.Threatened Species Recovery Hub; NSW Bushfire Risk Management Research Hub; Australian Wildlife Society; World Wildlife Fund.http://wileyonlinelibrary.com/journal/gebZoology and Entomolog

    Fire, energy, and the ecology of reptiles in semi-arid Australia

    Full text link
    ‬Fire dependent ecosystems cover over half of the world\u27s land surface. Understanding the factors that determine the distribution of fauna in these systems is essential to biodiversity conservation. This thesis explores the ecology of reptiles in a fire-prone region.<br /
    • …
    corecore