39 research outputs found

    Molecular Dynamics Simulations of Biotin Carboxylase

    Full text link

    A curious case of dynamic disorder in pyrrolidine rings elucidated by NMR crystallography

    Get PDF
    A pharmaceutical exhibits differing dynamics in crystallographically distinct pyrrolidine rings despite being nearly related by symmetry, with one performing ring inversions while the other is constrained to torsional librations. Using 13C solid-state magic-angle spinning (MAS) NMR and DFT calculations, we show that this contrast originates from C-H···H-C close contacts and less efficient C-H···π intermolecular interactions observed in the transition state of the constrained pyrrolidine ring, highlighting the influence of the crystallographic environment on the molecular motion

    Improving Confidence in Crystal Structure Solutions Using NMR Crystallography: The Case of β-Piroxicam

    Get PDF
    NMR crystallographic techniques are used to validate a structure of β-piroxicam determined from powder X-ray diffraction (PXRD) with a relatively poor R-factor. Geometry optimization of PXRD- and single-crystal XRD- derived structures results in convergence to the same energy of the structures, with minimal atomic displacements, and good agreement of gauge-included projector augmented wave (GIPAW) calculated and experimentally determined NMR 1H, 13C, and 15N chemical shifts, and 14N quadrupolar parameters. Calculations on isolated molecules combined with 2D magic-angle spinning (MAS) 1H double-quantum (DQ) and 14N–1H NMR experiments confirm the 3D packing arrangement of β-piroxicam. NMR crystallography is shown to be an effective means of validating crystal structures that might otherwise be considered sceptically on the basis of diffraction data alone

    Organotrifluoroborates as attractive self-assembling systems: the case of bifunctional dipotassium phenylene-1,4-bis(trifluoroborate)

    Get PDF
    A multitude of non-covalent interactions, investigated by X-ray crystallography and computational chemistry techniques, proved to be responsible of the spontaneous self-assembly of a bis(trifluoroborate) dipotassium salt

    Mechanically Induced Amorphization of Diaqua-bis(Omeprazolate)-Magnesium Dihydrate

    No full text
    The influence of milling diaqua-bis(omeprazolate)-magnesium dihydrate (DABOMD), an active pharmaceutical ingredient (API), was investigated. DABOMD was processed in a planetary ball mill at different milling times, from 1 to 300 min. The milling process resulted in a prominent comminution (size reduction) and amorphization of the API. DABOMD amorphization was identified with various characterization techniques including thermogravimetric analysis, differential scanning calorimetry, powder X-ray diffraction, and attenuated total reflection-Fourier transform infrared spectroscopy. The solid–solid crystalline to amorphous phase transformation is driven by compression, shear stresses, and heat generated in the planetary ball mill. This leads to distortion and breakage of hydrogen bonds, release of water molecules from the crystalline lattice of DABOMD and the accumulation of defects, and eventually a collapse of the crystalline order. Model fitting of the kinetics of comminution and the amorphization of DABOMD revealed a series of events: a rapid comminution at the start of milling driven by crystal cleavage of DABOMD, followed by partial amorphization, which is driven by rapid water diffusion, and subsequently, a slow steady comminution and amorphization

    Molecule VI: Sulfonimide or Sulfonamide?

    No full text
    The tautomerism of molecule <b>VI</b>, a benchmark system for crystal structure predictions, has been investigated by the use of computational chemistry. Ab initio and density functional calculations including dispersion corrections show that monomers of molecule <b>VI</b> strongly (11 kcal mol<sup>–1</sup>) prefer to exist as sulfonamide tautomer, while remarkably the equilibrium is shifted toward sulfonimide tautomers in larger aggregates due to formation of stronger hydrogen bonds for the imide tautomer
    corecore