3,044 research outputs found

    Using the X-FEL to understand X-ray Thomson scattering for partially ionized plasmas

    Full text link
    For the last decade numerous researchers have been trying to develop experimental techniques to use X-ray Thomson scattering as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. With the advent of the X-ray free electron laser (X-FEL) at the SLAC Linac Coherent Light Source (LCLS) we now have such a source available in the keV regime. One challenge with X-ray Thomson scattering experiments is understanding how to model the scattering for partially ionized plasmas. Most Thomson scattering codes used to model experimental data greatly simplify or neglect the contributions of the bound electrons to the scattered intensity. In this work we take the existing models of Thomson scattering that include elastic ion-ion scattering and the electron-electron plasmon scattering and add the contribution of the bound electrons in the partially ionized plasmas. Except for hydrogen plasmas almost every plasma that is studied today has bound electrons and it is important to understand their contribution to the Thomson scattering, especially as new X-ray sources such as the X-FEL will allow us to study much higher Z plasmas. Currently most experiments have looked at hydrogen or beryllium. We will first look at the bound electron contributions to beryllium by analysing existing experimental data. We then consider several higher Z materials such as Cr and predict the existence of additional peaks in the scattering spectrum that requires new computational tools to understand. For a Sn plasma we show that the bound contributions changes the shape of the scattered spectrum in a way that would change the plasma temperature and density inferred by the experiment.Comment: 13th International Conference on X-ray Lasers Paris, France June 10, 2012 through June 15, 201

    Average-Atom Model for X-ray Scattering from Warm Dense Matter

    Get PDF
    A scheme for analyzing Thomson scattering of x-rays by warm dense matter, based on the average-atom model, is developed. Emphasis is given to x-ray scattering by bound electrons. Contributions to the scattered x-ray spectrum from elastic scattering by electrons moving with the ions and from inelastic scattering by free and bound electrons are evaluated using parameters (chemical potential, average ionic charge, free electron density, bound and continuum wave functions, and occupation numbers) taken from the average-atom model. The resulting scheme provides a relatively simple diagnostic for use in connection with x-ray scattering measurements. Applications are given to dense hydrogen, beryllium, aluminum, titanium, and tin plasmas. At high momentum transfer, contributions from inelastic scattering by bound electrons are dominant features of the scattered x-ray spectrum for aluminum, titanium, and tin.Comment: 22 pages, 10 figures Presentation at Workshop IV: Computational Challenges in Warm Dense Matter at IPAM (UCLA) May 21 - 25, 201

    Shuttle Ku-band and S-band communications implementations study

    Get PDF
    The interfaces between the Ku-band system and the TDRSS, between the S-band system and the TDRSS, GSTDN and SGLS networks, and between the S-band payload communication equipment and the other Orbiter avionic equipment were investigated. The principal activities reported are: (1) performance analysis of the payload narrowband bent-pipe through the Ku-band communication system; (2) performance evaluation of the TDRSS user constraints placed on the S-band and Ku-band communication systems; (3) assessment of the shuttle-unique S-band TDRSS ground station false lock susceptibility; (4) development of procedure to make S-band antenna measurements during orbital flight; (5) development of procedure to make RFI measurements during orbital flight to assess the performance degradation to the TDRSS S-band communication link; and (6) analysis of the payload interface integration problem areas

    X-ray Thomson scattering for partially ionized plasmas including the effect of bound levels

    Full text link
    X-ray Thomson scattering is being developed as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. Most experiments are currently done at large laser facilities that can create bright X-ray sources, however the advent of the X-ray free electron laser (X-FEL) provides a new bright source to use in these experiments. One challenge with X-ray Thomson scattering experiments is understanding how to model the scattering for partially ionized plasmas in order to include the contributions of the bound electrons in the scattered intensity. In this work we take the existing models of Thomson scattering that include elastic ion-ion scattering and the electron-electron plasmon scattering and add the contribution of the bound electrons in the partially ionized plasmas. We validated our model by analyzing existing beryllium experimental data. We then consider several higher Z materials such as Cr and predict the existence of additional peaks in the scattering spectrum that requires new computational tools to understand. We also show examples of experiments in CH and Al that have bound contributions that change the shape of the scattered spectra.Comment: SPIE 2013 Optics and Photonics, San Diego, CA, United States August 25, 2013 through August 29, 2013. arXiv admin note: substantial text overlap with arXiv:1212.5972, arXiv:1207.507

    Gyroscopic motion of superfluid trapped atomic condensates

    Full text link
    The gyroscopic motion of a trapped Bose gas containing a vortex is studied. We model the system as a classical top, as a superposition of coherent hydrodynamic states, by solution of the Bogoliubov equations, and by integration of the time-dependent Gross-Pitaevskii equation. The frequency spectrum of Bogoliubov excitations, including quantum frequency shifts, is calculated and the quantal precession frequency is found to be consistent with experimental results, though a small discrepancy exists. The superfluid precession is found to be well described by the classical and hydrodynamic models. However the frequency shifts and helical oscillations associated with vortex bending and twisting require a quantal treatment. In gyroscopic precession, the vortex excitation modes m=±1m=\pm 1 are the dominant features giving a vortex kink or bend, while the m=+2m=+2 is found to be the dominant Kelvin wave associated with vortex twisting.Comment: 18 pages, 7 figures, 1 tabl

    Effective interactions and large-scale diagonalization for quantum dots

    Full text link
    The widely used large-scale diagonalization method using harmonic oscillator basis functions (an instance of the Rayleigh-Ritz method, also called a spectral method, configuration-interaction method, or ``exact diagonalization'' method) is systematically analyzed using results for the convergence of Hermite function series. We apply this theory to a Hamiltonian for a one-dimensional model of a quantum dot. The method is shown to converge slowly, and the non-smooth character of the interaction potential is identified as the main problem with the chosen basis, while on the other hand its important advantages are pointed out. An effective interaction obtained by a similarity transformation is proposed for improving the convergence of the diagonalization scheme, and numerical experiments are performed to demonstrate the improvement. Generalizations to more particles and dimensions are discussed.Comment: 7 figures, submitted to Physical Review B Single reference error fixe

    Fragmentation of UH Nuclei

    Get PDF
    We have measured the total charge changing cross sections as a function of energy for projectile _(36)Kr nuclei in a wide range of targets ranging from polyethylene to lead. These cross sections are energy dependent and the dependence increases as the target mass increases
    • …
    corecore