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Average-Atom Model for X-ray Scattering from
Warm Dense Matter

W. R. Johnson, J. Nilsen and K. T. Cheng

Abstract A scheme for analyzing Thomson scattering of x-rays by waemsé
matter, based on the average-atom model, is developed.d3isph given to x-ray
scattering by bound electrons. Contributions to the s@dt®-ray spectrum from
elastic scattering by electrons moving with the ions andnfinelastic scattering
by free and bound electrons are evaluated using parametegmical potential,
average ionic charge, free electron density, bound andrtamh wave functions,
and occupation numbers) taken from the average-atom niblaketesulting scheme
provides a relatively simple diagnostic for use in conrmttiith x-ray scattering
measurements. Applications are given to dense hydrogeyllibm, aluminum, ti-
tanium, and tin plasmas. At high momentum transfer, coutidins from inelastic
scattering by bound electrons are dominant features ofctéesed x-ray spectrum
for aluminum, titanium, and tin.

1 Introduction

Measurements of Thomson scattering of x-rays provide im&tion on tempera-
tures, densities and ionization balance in warm dense mateous techniques
for inferring plasma properties from x-ray scattering meaments have been de-
veloped over the past decade [1-22]. Many of these techsidogether with the
underlying theory, were reviewed by Glenzer and Redmer in[R8].

The present average-atom scheme is based on a theoresceptien of x-ray
scattering proposed by Gregori [3], the important diff@emeing that parame-
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ters used to evaluate the Thomson-scattering dynamictsteufunction are taken
from the average-atom model. The average-atom model usednas introduced
in Ref. [24] to study electromagnetic properties of plasniée scheme developed
here to analyze Thomson scattering is closely related toath&ahoo et al. [25],
where a somewhat different version of the average-atom hveate used. Predic-
tions from the present model differ substantially from #ngsRef. [25]. The origin
and consequences of these differences will be discussad lat

The Thomson scattering cross section for an incident pheattmenergy, mo-
mentum bay, hkg), and polarizatiorg scattering to a state with energy, momentum
(ha, PK7), and polarizatiorg; is

do do wy
where )
do , [ €
(60 ), 122 () @

The dynamic structure function S(k, w) appearing in Eq. (1) depends on two vari-
ables:k = |ko — k1| andw = ap — awn. As shown in the seminal work of Chihara
[26, 27], S(k, w) can be decomposed into three terms: the 8¢k, w) is the con-
tribution from elastic scattering by electrons that folltive ion motion, the second
Se(k, w) is the contribution from scattering by free electrons, drethirdS, (k, w)
is the contribution from bound-free transitions (inelasttattering by bound elec-
trons) modulated by the ionic motion. The modulation fagsdgnored here when
evaluating the bound-free contribution. For the boun@-Beattering, calculations
are carried out using both average-atom final states and-plame final states. Sub-
stantial differences are found between average-atom ameplave calculations,
particularly in the low-momentum transfer region of thetsm&d x-ray spectrum.
The average-atom model is discussed in Sec. 2 followed bgaussion of the
three contributions to the structure functions in Sec. 3Ség. 4, applications are
given to hydrogen, beryllium, aluminum, titanium, and tlagmas.

2 Average-Atom Model

The average-atom model is a quantum mechanical versioneoteimperature-
dependent Thomas-Fermi model of a plasma developed s$ixdg-tyears ago by
Feynman, Metropolis and Teller [28]. In this model, the plass divided into neu-

tral Wigner-Seitz (WS) cells (volume per atdfps = A/pNa, whereA is the atomic
weight, p is the mass density, ardh is Avogadro’s number). Inside each WS cell

is a nucleus of chargéandZ electrons. Some of these electrons are in bound states
and some in continuum states. The continuum density is fatitbe cell bound-

ary and merges into the uniform free-electron density: Z; /\Viys outside the cell,
whereZ; is the number of free electrons per ion. Each neutral celltteemefore, be
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Fig. 1 Main plot: The radial density #2n(r) in a.u. for metallic Al atksT =5 eV (solid black
curve) integrates td = 13 forr < Rys=2.991ay. The continuum contributionmznc(r) (dashed
red curve), also in a.u., integrates to 3 for Rys. The bound & 2s, and 2 shells are completely
occupied at this temperature. Inset: The dashed red cuwngtrétes the Friedel oscillations of the
continuum density and shows hd(r) = nc(r)iys converges t@; = neVys (solid green line) for

r > Rys. The chemical potential predicted by the modglis- 0.2406 a.u. and the number of free
electrons per ion igs = 2.146.

regarded as an ion imbedded in a uniform sea of free electfonsaintain over-
all neutrality, it is necessary to introduce a uniform (metri) positive background
densityZ; /Viys. The model, therefore, describes an isolated (neutraffjéating in
a (neutral) “jellium” sea.

The quantum-mechanical model here, which is discussedfinf?Z4, is a non-
relativistic version of theénferno model of Liberman [29] and the more recéhtr-
gatorio model of Wilson et al. [30]; it is similar to the nonrelatitisaverage-atom
model described by Blinski and Ishikawa [31]. Specificadigch electron in the ion
is assumed to satisfy the central-field Schrodinger equoati

Pz
{7 - +V] Ya(r) = aa(r), 3)
wherea = (n,l) for bound states ofe, 1) for continuum states. Atomic units (a.u.)
wheree=h = m= 471gy = 1 are used here. In particular, 1 a.u. in energy equals 2
Rydbergs (27.211 eV), and 1 a.u. in length equals 1 Bohr sagi(0.529A).

The wave functiona(r) is decomposed in a spherical basis as

Ua() = TPa(1) Y () Yoo, @

whereY(f) is a spherical harmonic anyl; is a two-component electron spinor.
The bound and continuum radial functio®gr) are normalized as
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| rPa(r) P (r) = & ©)
| arPatr) P (r) = a(e—¢) ©)

respectively. The central potentM(r) in Eq. (3) is taken to be the self-consistent
Kohn-Sham potential [32]

1
v(r) = am [ L r2n@ydr - P n(r)] y )
rs m

where the first term in the right-hand side is the direct sureg potential with

r~ = maxr, r’) and the second term is the Kohn-Sham exchange potentialeWhi
electron-electron interactions inside the Wigner-Sedfiscare reasonably well ac-
counted for by this simple model, it should be noted thatmigkies in the Kohn-
Sham potential are poor approximations to ionization emeer¢gading to inaccurate
thresholds and peaks of bound-free contributionS(kpw), which can differ from
experiment by 20 — 30%. The electron densify) in Eq. (7) has contributions from
bound statesy(r) and from continuum states(r),

n(r) = np(r) -+ ne(r). (8)
The bound-state contribution to the densigyr) is

- 2(21 +1)
471T2nb(r) = ; 1+exd(en — ) /keT]

Pn|(r)27 (9)

whereg, is the bound-state energy,is the chemical potential, and the sum over
(n,1) ranges over all bound subshells. The continuum contributiothe density
ne(r) is given by

Ar2ng(r) = > /O “de — exz((zgl - ’11)) i P02 (10)

Finally, the chemical potential is chosen to ensure charge neutrality inside the WS
cell:

Rws

z— [ ndr= [amnrar. (11)
r<Rws 0

Equations (3—-11) above are solved self-consistently te tiie chemical potential

U, the potential energy functiovi(r) and the electron densityr).

The upper limit in Eqg. (9) is determined by systematic triadi@rror. The val-
ues ofn and! are increased starting from= 1 andl = 0. If a state is bound, it
is included in the sum, otherwise not. At metallic densitied temperatures below
100 eV (warm dense matter) fewer than a dozen states typiwaltl. To carry out
the sum-integral in Eq. (10) for the continuum density, weidglly use 12 partial
waves () and 40 to 50 energy points)(for each partial wave. The energy grid for



X-ray Scattering from WDM 5

Table 1 Aluminum at density 2.70 g/cc addT = 5 eV. Bound-state and continuum partial-wave
occupation numbers inside the WS sphere are given, alorigheiind-state eigenenergies. The
Ne-like core is seen to be almost completely occupied. Theafithe bound-state and continuum
occupation numbers is precisely= 13.

Bound States Continuum
State occ# e(eV) | occ#
1s  2.0000 -1485.07 0 0.9130
2s  2.0000 -92.16 1 13263
2p  5.9998 -54.87 2 06192

3 0.1173
4 0.0209
5 0.0031
6 0.0004
7  0.0000
Np 9.9998 N 3.0002

the integral in Eq. (10) is chosen using a modified Gauss-tagscheme. Thus,
one is faced with solving a system of roughly 500 coupled séeawrder differen-
tial equations. These equations are solved iterativelygusipredict-correct scheme
based on Adam’s method [33, Chap. 2.3].

The boundary conditions used in solving Eqg. (3) deserve soamion. Bound-
state wave functions and their derivatives are matchedeabdlundary = R,s to
solutions outside the WS sphere (wh¥re- 0) that vanish exponentially as— .
Similarly, continuum functions and their derivatives aratained to phase-shifted
free-particle wave functions at= R,.. It should be noticed that the continuum den-
sity n¢(r) inside the WS sphere, which oscillates as predicted by Er¢sd], is
distinctly different from the uniform free electron densit. In the present model,
nc(r) smoothly approaches. outside the sphere. These points are illustrated in
Fig. 1, where the bound-state and continuum densities atiedlfor Al at metallic
density and temperatukgT = 5 eV. Occupation numbers of bound states and con-
tinuum partial-wave states inside the WS sphere are givamgalith bound-state
eigenvaluesin Table 1.

The boundary conditions used here differ from those useddho®& et al. in
Ref. [25], where the first derivative of the wave functionaguired to vanish aR,s.

The differences in boundary conditions lead to major défferes in the average-
atom structure. For example, the model used in Ref. [25]iptethat theM shell of
metallic Al is partially occupied at temperatuded < 10 eV, whereas the present
model predicts that thiel shell is empty in this temperature range. Consequences of
such differences are discussed later in Sec. 4.
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3 Dynamic Structure Function

As noted in the introduction, the theoretical model devetbpy Gregori et al. [3],
with input from the average-atom model, is used here to evalilhe dynamic struc-
ture functionS(k, w). The ion-ion contributior§;(k, w) is evaluated in terms of
Fourier-transforms of electron densities and formulastferstatic ion-ion structure
function S (k) are given in Ref. [35]. We use versions of the formulas $gfk)
that include options discussed in Ref. [8] for differentotlen and ion tempera-
tures. The dominant effect of different electron and iongeratures is to modify
the relative size of elastic to inelastic contributionsSt&, ). The use of different
temperatures is, therefore, a convenient tool for fittingezimental data, even in
cases where equilibrium is reached. The inability to fit expental data in some
equilibrium cases without such an artifice is a weaknessarpthsent scheme and
is the subject of current research. The electron-elecoatributionSe(k, w) is ex-
pressed in terms of the dielectric functiefk, w) of the free electrons which in turn
is evaluated using the random-phase approximation (RRA3nkNn resonances are
present inSe(k, w) at low momentum transfeis Finally, bound-state contribu-
tions to the dynamic structure function are evaluated usiveyage-atom bound-
state wave functions for the initial state. The final-statetmuum wave function is
described in two different ways: (1) approximating the fistdte by a plane wave as
in Ref. [25], and (2) using an average-atom final-state thpt@aches a plane wave
asymptotically. There are dramatic differences betweeseltwo choices especially
at low momentum transfers. The more realistic average-atwite automatically
includes ionic Coulomb-field effects.

3.1 lon-lon Structure Function

The contribution to the dynamic structure function fromstéilascattering by elec-
trons following the ion motiorg;(k, w) is expressed in terms of the corresponding
static ion-ion structure functio§; (k) as:

Sii(k, ) = | f (k) +a(k)|?Sii () 5(w). (12)

In the abovef (k) is the Fourier transform of the bound-state density afid is
the Fourier transform of the density of electrons that stthe ionic charge. In the
average-atom approximation, the screening electronsharedntinuum electrons
inside the Wigner-Seitz sphere and

Rws .
(k) +q(k) = 47 /O 2 () + 1e(r)] jo(kr) dr, (13)

wherejo(2) is a spherical Bessel functions of order 0. Note th@) + q(0) = Z in
the average-atom model. In the applications discussed &) is replaced by an
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Fig. 2 Left panel:S;(k) is shown for Be metal at electron temperatigd. = 20 eV and ion-
electron temperature ratid@s/Te = (1, 0.5, 0.1) illustrated in solid, short-dashed and long dashed
curves , respectively. The valle= 0.543 corresponds to an incident photay= 2960 eV scattered

at angle 40 Right panel:S;(k, w) in a.u. for Be metal aksTe = 20 eV andT;/Te = 0.1, where
the functiond(w) is replaced by a Gaussian of width 10 eV and= ayp — w is the energy of the
scattered x-ray.

?instrumental? Gaussian, with full-width at half maximumiG-eV. This value is
chosen because typical experiments in Be [13] utilize atspeeter with a 10-eV
instrument width and use a Cl Ly-source at 2.96 keV.

Approximate schemes to evaluate the static structure ifumg; (k) are dis-
cussed, for example, in Ref. [36]. Here, we follow Gregorakf{3] and make use
of formulas given by Arkhipov and Davletov [35] that accotmt both quantum-
mechanical and screening effects. The funcp(k) in Ref. [35] is expressed in
terms of the Fourier transform of the ion-ion interactiongmtial @; (r) through the
relation:

N
Si(k):l—m%(k)- (14)

Different Electron and lon Temperatures

In the average-atom modadl,is the electron temperatufewhich, in equilibrium, is
equal to the ion temperatufe To allow for different electron and ion temperatures,
the equations fo§; (k) given by Arkhipov and Davletov [35] are modified following
the prescription laid out by Gregori et al. [8]. The electtemperaturde is replaced

by an effective temperatuf® that accounts for degeneracy effects at temperatures
lower than the Fermi temperature. Similarly, the ion temperaturg is replaced by

an effective temperatuf® that accounts for ion degeneracy effects at temperatures
lower than the ion screened Debye temperalgreExplicit formulas forS; (k) are
found in Ref. [8]. The dramatic effect of different electrand ion temperatures on
the static structure functiorsi(k) for metallic Be atTe = 20 eV are illustrated in

the left panel of Fig. 2. This figure is similar to the uppéi-fganel of Fig. 1 in

Ref. [8], which was obtained under similar condition. In tight panel of Fig. 2,
contributions tdS; (k, w) for Be atTe = 20 eV andT; = 2 eV are shown.
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3.2 Electron-Electron Structure Function

The electron-electron structure functiBg(k, w) is expressed in terms of the free-
electron dielectric functioa(k, w) through the relation Eq. (42) in Ref. [27]:

1 k2 !
Selk ) = k) A L‘(k, wJ ' )

We follow Gregori et al. [3] and evaluate the dielectric ftian in the random-
phase approximation (RPA):

4 ® 2
S(k,w):1+m/o Z(p) pdp

1 1 1
X /,1du {kZ—Zpk;H—Zw—l—iv * k2+2pku—2w—iv] . (1)
where 1
y =
) = T o072~ ) fleT]
is the free-electron Fermi distribution. The chemical ptitd i is obtained from the
average-atom model. It should be noted that the RPA digéteainction reduces to

the Lindhard dielectric function [37, 38] in the limiT — O, whereZ (p) reduces
to a unit step function that vanishes for> ke. In the finiteT case, we find

17)

/1 du 1 [k +2pk+2w+iv (18)
Jo1k2—2pku+2w+iv  2pk | k2 —2pk+2w+iv
1 2 _ —i
/ du _ iln ke +2pk — 2w !v . (19)
Jo1 K2+ 2pku —2w—iv  2pk | k2 —2pk—2w—iv

From the above expressions, it is clear thafelRe w)] is an even function ofv and
that Ime(k, w)] is an odd function ofv. Therefore, we can limit ourselves to cases
wherew is positive. Forw > 0, one obtains in the limi — O+,

{I [k2+2pk+2w+iv] {k2+2pk—2w—iv]}

I UM e zpkr 2051 | T | @ 2pk—20=1v
N K2+ 2pk+ 2w k2 +2pk— 2w
k2 —2pk+2w k2 — 2pk — 2w

+imonly in the intervalk? — 2w| < 2pk < k2 +2w.  (20)

It follows that
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Fig. 3 Left panel: Real and Imaginary parts of the dielectric fiorcie (k, w) are plotted along
with —Im[1/¢] for coherent scattering of a 2960-eV photon &t 20m Be metal aks T = 18 eV.

Right panel: The resulting electron-electron structumcfion Se(k, w) (solid line) is shown to-
gether withS;(k, w) (dashed line) which has an instrumental width of 10 eV. I #xample
k=0.2757 a.u. anduy, = 2960— w (eV) is the energy of the scattered x-ray.

Refe(k )] = 1+ =5 [* #(p)pdp

X {In
b —a?
EREY ST i SR,

Tle.
with a = |2w — k?|/2k andb = (2w + k?)/2k. From Eg. (15) and the fact that
Im[1/e(k, w)] is an odd function oty, it follows that

See(kv Ol)) = exqw/kBT)%e(ka _w)' (23)

Therefore, in the absence of bound-state contributionasoming the cross-section
ratio at down-shifted and up-shifted plasmon peaks, pewidn experimental
method for determining the plasma temperature.

The real and imaginary parts etk, w), along with—Im[1/(k, w)], are shown
in the left panel of Fig. 3 for Be metal at temperatkgd = 18 eV. A plasmon
peak, associated with coherent scattering of the incideai/ by the electrons in
the plasma, is seen near= 20 eV, where the real part of the dielectric function
vanishes. The corresponding structure func8eu(k, w), illustrating up- and down-
shifted plasmon features, is shown in the right-hand pdfmi.comparison pur-
poses, the elastic-scattering structure funcpfk, w) is also shown in the right-
hand panel. The functions displayed in this plot corresgorstattering of an inci-
dent 2960-eV photon at an angle°20he classical plasma frequency for this case
(Ne=2.05x 107 cc 1) is wy = 16.8 eV.

k2 + 2pk — 2w
k2 — 2pk — 2w

k2 +2pk+ 2w
k2 — 2pk+ 2w

] e

and

} (22)
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Fig. 4 Left panel: Real and Imaginary parts of the dielectric fiorcie(k, w) are plotted along
with —Im[1/¢€] for incoherent scattering of a 2960-eV photon &tf86m Be metal ak; T = 18 eV.
Right panel: The electron-electron structure funci®usik, w) (solid line) is shown together with
Si(k, w) (dashed line) which is assumed to have an instrumental width eV. The corresponding
momentum transfer is= 1.123 a.u. andv; = 2960— w (eV) is the energy of the scattered x-ray.

The amplitude and width of plasmon peaks is governed by theremce param-
etera = 1/(Ak), defined in Egs. (5-7) of Ref. [23]. Hergs is the shielding length
given by

TF T
Ao ke TFy/2(H/keT) 7 (24)
ArmeF_1/2(1/keT)
whereF;(x) is a complete Fermi-Dirac integral,
B 1 00 yV
Fo(x) = r(1+v) ./o dy1+ exply —Xx) (25)

For the example shown in Fig. 3, the screening lengtk- 1.440 and the cor-
responding coherence paramater 2.520, so one expects and observes plasmon
resonances. At values aof less than than one, coherent scattering by the plasma
no longer occurs and the plasmon peak in the dielectric fomatisappears. An
example of this behavior is illustrated in Fig. 4, where theettric function for
scattering of a 2960-eV photon at“¥@om Be metal atcT = 18 eV is illustrated.
The screening radius in this case remains unchaiged..440, but the momentum
transfer increases to= 1.123 and the resulting coherence parametar4s0.6188.
Therefore, as expected, all signs of plasmon resonancebseat inSe(k, w).

3.3 Bound-Free Structure Function

The contribution to the dynamic structure function for Themm scattering from
ionic bound state$§,(k, w) is the sum over contributions from individual subshells
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with quantum numberg, 1):
Sk, w) = ZSﬂ(k, ) (26)
ni
2

[ w0 Yun(r) L@

Ep=0+&n

On pdQ
Sk, w) = 2|+1;/ (2n)§

whereonm is the fractional occupation number of subshelll), andk = ko — ki
andw = ap — wy are the momentum and energy transfers, respectively, frem t
incident to the scattered photon as defined in Eq. (1). In Bove Yp(r) is an
average-atom wave function that approaches a plane glasymptotically. We
consider two cases below: firstly, the case whpgér) is approximated by a plane
wave and secondly, the case whg#gtr ) is an average-atom scattering function that
approaches a plane wave asymptotically.

Plane-wave final states
Approximating the final state wave function by a plane waysgr) = ePr the
bound-free structure function in Eq. (27) can be rewritten a

2
; (28)

[ re™ ()

Onl " pdQ
Sitkw) =7 +1%/ (2n)§

wheregp = w+ &, andq = k— p. Note thatq is the momentum transferred to the
ion. This expression may be simplified to

Onl -p+k 2
Sulkw) =g | adalka @l (29)
Ka (@) = [ rarji(anPu (r). (30)

Shi (k, w) in Eq. (29) depends implicitly oo through the relation

P=V2(w+en) -

Average-atom final states

In the average-atom approach, the final state wave functinsists of a plane wave
plus anincoming spherical wave. (N.B. An outgoing spherical wave is assedia
with an incident electron. Time-reversal invariance, #fere, requires that a con-
verging spherical wave be associated with an emergingrele§tThe scattering
wave functionyp(r) in Eq. (27) may be written
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Fig. 5 The berylliumK-shell structure functiorg;s(k, w) is shown for incident photon energy
2960 eV and scattering angles°3@nd 150. The black curves show plane-wave results, the
blue lines show the result obtained using an average-atamhdiate wave function and the red
lines show exact nonrelativistic Coulomb results. The drdarsuppression of average-atom and
Coulomb structure functions at forward angles (the coordmg curves are multiplied by 10) is
evident in the left panel.

(1) = 5 e 8 LR (1) ¥y (8) Y (), (31)

l1my

where the continuum wave function is normalized to a phagited sine wave
asymptotically

Py (r) — sin(pr —1m/2+ ). (32)
The factordk" in Eq. (27) is expanded as
e = S i1, (KN) Yz, (K) Yigm, () (33)
l2mp

The bound-free structure function in Eq. (27) may then beesged as

Oy [ pdQp 2
Si= 21+ 1. (27_[)3 %|‘]nlm| ) (34)
where
— (47-[)2 '|27|l A * P
Jnim = —— Zl i, (P K) > (lamuMim|l2m2) Yy my (B) Yigm, (K),  (35)
I1l2 my iy
with 1 -
iy (p.K) = - eiP | drPuy (1) (1)1, (k) (36)
and

(13m0 Vimltzme) = [ A2 X, (F) Vi (F) Vi, (). (37)
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SquaringJym, integrating over angles @, and summing over magnetic quantum
numbers, one obtains

2
S = —7$0n| IlZzAunz i, (p.K)|? (38)
where 5
Ay, = (21+1)(22+1) ('é g'é) : (39)

In Fig. 5, several calculations of the structure functfgk, w) are compared
for a photon of incident energy 2960 eV scattered &t(B@- 0.411 a.u.) and 150
(k=1.533 a.u.) from th& shell of beryllium metal aksT = 20 eV. The results of
calculations carried out using average-atom final statesialler than those us-
ing plane-wave final states by a factor of about 4@ at 30° and 2.5 at = 150"
This suppression is a characteristic Coulomb field effecteéd, exact nonrelativis-
tic Coulomb-field calculations of Thomson scattering [38ith nuclear charge ad-
justed to align the Coulomb and average-atom thresholdstriited by the curves
labeled “Coulomb” in Fig. 5, show a similar suppression.

The situation is quite different at much higher momentumsfar. This fact is
illustrated in the left panel of Fig. 6, where we considertisrang of an 18-keV
photon at 130(k = 8.750 a.u.) from Be metal &T = 12 eV. The solid black curve
shows the bound-state contribution to ®(&, w) evaluated using an average-atom
final state, while the dashed green line shows the contobwivaluated using a
plane-wave final state. In this high-momentum transfer ctieetwo calculations
differ qualitatively near threshold and the peak energitfsrdby a few percent, but
the average-atom and plane-wave results are otherwisegjmitlar.

In the right panel of Fig. 6, we consider a more complex exangdattering of a
9300-eV x-ray at 130k = 4.521 a.u.) from tin metal & T = 10 eV. Contributions
from individual subshells are shown together with their ssyk, ).

4 Applications

The scheme developed in the previous sections is applieévieral examples of
current or possible future interest. The example of hydnoggeelectron density
10?4 cc! and temperature 50 eV is considered first. In this exampée Htion
is completely stripped and inelastic scattering is deteemiicompletely by the
Se(k, ). The plasmon resonances present in the hydrogen spectréonaeaird
scattering angles fade rapidly with increasing angle. dseof beryllium metal at
18 eV, which has been well studied both theoretically ancegrpentally, is con-
sidered next and good agreement is found between averagepaedictions and
experimental data. For beryllium, the bound-state coutidin is small and beyond
the range of available experimental data. As a third exajopleulations o5(k, w)
for scattering of 9.3-keV and 3.1-keV x-rays from aluminuratal atksT =5 eV
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Fig. 6 Left panel: The dynamic structure function for the state of Be metal atT = 12 eV

is shown for scattering of an incident x-ray with enemgy = 18-keV x-ray at 13@ The solid
black and dashed green lines are results calculated usengg®+atom and plane-wave final states,
respectively. The dashed red line is the elastic scatteamgributionS; (k, w) with instrumental
width 10 eV. Right panel: The total bound-free dynamic dure functionS,(k, w) with average-
atom final states is shown for tiZ (= 50) at metallic density an&T = 10 eV is shown, along
with contributions from individual subshells. The incide@ray energy isuy = 9.3 keV and the
scattering angle is 130In the abovew;, = wy — w is the energy of the scattered x-ray.

are evaluated and compared with the average-atom prewidippSahoo et al. [25].
Finally, Thomson scattering of 9.3-keV x-rays from titamiand tin at 30and 130
are considered to illustrate cases where bound-statelmatitns are the dominant
features of the scattered x-ray spectrum. In Table 2, wsdiste important average-
atom properties for the elements considered in the follgwubsections.

4.1 Hydrogen

In the average-atom model, a density= 1.931 g/cc is required aT = 50 eV

to achieve free-electron density = 10%* cc L. Physical properties of the plasma
under these conditions are listed in the second column déTabrhe single elec-
tron in hydrogen is completely stripped, leaving only thatowuum inside the WS
sphere. The continuum density(r) merges into the uniform free-electron den-

Table 2 Average-atom parameters for the examples of hydrogenl|libeny aluminum, titanium,
and tin presented in Sec. 4.

H Be Al Ti Sn

ke T (eV) 50 18 5 10 10

p (g/cc) 1.931 1.635 2.700 4.540 7.310
Rus (a0) 1.118 2452 2991 3.044 3.515
u(a.u.) 1.091 -0.531 0.241 -0.044 -0.071
Nbound 0 1.966 10.000 17.341 45.622
Neont 1 2.036  3.000 4.659 4.378
Z; 0.867 1.647  2.146 2.322 3.374

ne (103 cc 1) 10 1.800 1.292 1.326  1.251
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Fig. 7 Left panel: The continuum density(r) inside the WS sphere for hydrogerkaT = 50 eV
and density 1.931 g/cc is seen to converge smoothly to tieedliectron densitye = 1074 cm 3
beyond the WS radiuRys. Right panel: The dynamic structure functik, w) for H atksT =
50 eV andne = 1074 cm 3 is plotted for scattering of a 5-keV photon at angles, 30° and 40,
andw; = 5— w (keV) is the energy of the scattered x-ray.

sity ne outside the sphere. The total number of electrons insidéNBesphere
Ne = 4njbRW5r2nc(r)dr = 1, however, the number of free electrons per ion is
Zs = 0.867. These points are illustrated in the left panel of Fig, 7.

Since there are no bound electrons, o8ly(k, w) contributes to the inelastic
scattering. The dynamic structure functions for scattgoia 5-keV x-ray at angles
20°, 30° and 40 are shown in the right panel of Fig. 7. The prominent plasmon
peaks atf = 20° wash out at as the scattering angle (and momentum trakjsfer
is increased. For this particular case, the screeninghehgt 1.071 a.u. differs
only slightly from the WS radiu®R,s = 1.118 a.u.. The values of the coherence
parametenr for 8 = (20°, 30°, 40°) area = (2.005, 1.345 1.018), respectively.
The resonant features in Fig. 7 are seen to be distinatrforl but disappear as
o approaches 1. It should be noted that the (unperturbedingldsequency for
hydrogen ate = 10?4 cm 3 is wy = 37.1 eV.

4.2 Beryllium

In the left panel of Fig. 8, the dynamic structure functiongoattering of a 2963-

eV photon at 40from beryllium (density = 1.635 g/cc) &T = 18 eV is shown.
ThelL-shell electrons are completely stripped under these tondibut theK shell
remains 97% occupied. The ion temperature, which govemsuhplitude of the
elastic peak, is chosen to bel2V in this example. For the case at hand, the coher-
ence parameter is = 1.21 > 1, so one expects and observes plasmon peaks in the
scattering intensity profile. In the average-atom appratiom, the threshold energy

for bound-state contributions is the average-atom eidaav@as = —86.8 eV. (As
mentioned earlier, average-atom eigenvalues are inaecapgproximations to re-
moval energies. The average-atom threshald is 20% smaller than the measured
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Fig. 8 Left panel: Structure functio8(k, w) for scattering of a 2963-eV photon at*4®om beryl-
lium at ne = 1.8 x 107 cm ! and electron temperature 18 eV. The bound-state coniibusi
scaled up by a factor of 50. Right panel: Intensities (aabjtrunits) for scattering of a Cl Ly
x-ray from beryllium at 40[41]; measured data (black solid line), source functiomébdiashed
line), and the average-atom fit (red solid line). In the abayeis the energy of the scattered x-ray.

K-shell threshold 111 eV in beryllium metal [40].) In the aage-atom approxima-
tion, bound-state contributions 8k, w) from K-shell electrons have a threshold at
w; = 2963— 86.8= 28762 eV. TheK-shell contribution multiplied by 50 is shown
in the left panel. The average-atom parameters used indhdslation are listed in
column three of Table 2.

To validate the present average-atom model against expetaindata, a Be ex-
periment done at the Omega laser facility that used a G lsgeurce to scatter from
nearly solid Be at an angle of 4% used. An electron temperature of 18 eV, ion tem-
perature of 2.1 eV, and density of 1.635 g/cc used in the geeatom model gives
an electron density of.& x 107 cc1, in agreement with the analysis in Ref. [41].
The right panel of Fig. 8 shows the experimental source fandtom the CI Lya
line as a blue dashed line. Because of satellite structutieeirsource we approx-
imate the source by three lines: a Cl byline at 2963 eV with amplitude 1 and
two satellites at 2934 and 2946 eV with relative amplitude8.675 and 0.037,
respectively. Doing the Thomson scattering calculatioimgishe three weighted
lines, we calculate the scattering amplitude for Thomsattedng (red solid line)
and compare against the experimental data (black solijl tieee. We observe ex-
cellent agreement within the experimental noise. Contidimg from the bound 4
electrons, which have a threshold at 2876 eV, are beyonatigerof the data shown
in the right panel.

4.3 Aluminum

As mentioned in the introduction, the present average-atalculations disagree
in various ways with those in Ref. [25], where Thomson scattefrom aluminum
metal at several temperatures was considered. To clagfgifferences, we compare
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results of the present calculations for the case of alumiatkgT = 5 eV with the
corresponding results presented in Ref. [25]. The dimersss producs(k, w) wy
is shown for scattering of 9300-eV and 3100-eV x-rays in &fednd right pan-
els of Fig. 9, respectively. The upper and lower panels of gighow results for
scattering angles of 3@nd 130, respectively. The plots in Fig. 9 can be compared
directly with those in Fig. 6 and Fig. 7 of [25], where similglots for 9300-eV
and 3100-eV x-ray energies can be found. The size and shape &fee-electron
contributions shown in Fig. 9 are in agreement with thosevsha the correspond-
ing figures in [25], however, the-shell contributions t&(k, w) in [25] are larger
by a factor of approximately 5 than those shown in Fig. 9. Meeg, contributions
from theM shell, which dominate the spectrum just below the elastakpe [25]
are completely absent in Fig. 9. Owing to the differencesdara-free contribu-
tions §,(k, w), the present prediction for the aluminum dynamic strucfunetion
S(k, w) differs in both size and shape from that given in [25].

Differences in boundary conditions between the two aveege models ac-
count for the presence or absence of bolhdhell electrons as discussed in Sec. 2.
Furthermore, difference in the relative size of thehell contributions at forward
angles may owe in part to the use of plane-wave final state25jh However, the
substantial difference in size of theshell contributions at backward angles remains
a mystery. The average-atom parameters for aluminum usihe jpresent calcula-
tion are given in the fourth column of Table 2.

4.4 Titanium & Tin

The average-atom model predicts that a titanium metal atV1@ én an Ar-like
configuration with completely filletk andL shells together with 1.97s®lectrons
5.36 P electrons in theM shell. This is an interesting case where contributions to
S(k, ) from theL andM shells are substantial. In the left panels of Fig. 10, the
dynamic structure functio(k, w) is shown in the solid black line for an incident
9.3-keV x-ray scattered at 3@nd 130. Contributions fromS,(k, w) shown in the
long-dashed green lines dominate the free-electron dnibinsSe(k, w) shown

in the short-dashed red lines. As seen in the lower-left haharp features associ-

Table 3 Comparison of the theoretical average-atom thresholds Y and experimental thresh-
olds from the NIST database [40] for contributions§ok, ) from individual subshells in titanium
and tin.

Titanium Tin
nl theory expt. A% nl theory expt. A%
2s 512.7 563.7 9 8 4778 4882 2
2p 426.8 4575 7 4 1189 136.5 13
3s 45.4 60.3 25 p 83.1 86.6 4
3p 22.8 34.6 34 d 22.4 23.9 6
5s 21 - -
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Fig. 9 S(k, w) ay is shown for scattering of 9300-eV and 3100-eV x-rays atss@l 130 from Al
metal atkz T = 5 eV. The short-dashed red curves are contribut®gk, w) from free electrons,
the long-dashed green curves give contributi§&, w) from bound 2 and 2 electrons and the
solid black curves show the total dynamic structure fumctlostrumental widths of 0.184y were
used. For Al metal atsT = 5 eV, the plasma frequency dg, = 13.35 eV. In the above figurey,
anday are energies of the scattered and incident x-rays, respBctandw = wy — w;.

ated with excitation of thé/ subshells (p and 3) show up just below the elastic
peak atwy = wyp, Whereas features associated with excitation ottkabshells (§
and %) show up 400 to 500 eV below the elastic peak. The bound-stegsholds
for titanium are compared with measured thresholds fronNg#onal Institute for
Standards & Technology (NIST) database [40] in Table 3.

Metallic tin at 10 eV has a Pd configuration with 45.6 boundccetns. The
resulting dynamic structure functid®{k, w) is shown in the right panels of Fig. 10
for scattering angles of 3@nd 130. The situation is similar to that for titanium;
bound-free contributions dominate those from free-eterstr The irregularities in
the bound-state contributions are associated with thet@fseontributions from
individual subshells. For scattering at 23€ontributions from individual subshells
are shown in the right panel of Fig. 6. Average-atom thregshfur tin are compared
with values from the NIST database [40] in Table 3.
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Fig. 10 Left panels:S(k, w) for scattering of a 9.3-keV x-ray & = 30° and 130 from Ti metal
atks = 10 eV is shown in the solid black line. The free-electron dbntion Se(k, w) is shown in
the short-dashed red line while the contribution from bostadesS, (k, w) is shown in the long-
dashed green line. Right panel: Same as left panel, excafpesog from Sn metal & = 10 eV.
Contributions from individual subshells of Sn are shownhia tight panel of Fig. 10. In the figure
above,w; = 9300— w (eV) is the energy of the scattered x-ray.

5 Summary

A scheme for analysis of Thomson scattering from plasmasdas the average-
atom model is presented. Given the plasma compos(#oA), densityp and tem-
peratureT, the model gives, in addition to the equation of state of tasma, all
parameters needed for a complete description of the Thostsdtering process. In
particular, the average-atom code predicts wave funcfamsound and continuum
electrons, densities of bound, screening, and free elestemd the chemical poten-
tial. Predictions of the present average-atom model diesagith those in Ref. [25]
where a similar model with different boundary conditionswaed. In the average-
atom model used in Ref. [25]d3M shell) electrons are bound in metallic Al for
temperatures between 2 and 10 eV, leading to substantialbstate contributions
to the dynamic structure function. In the present model,dmtrast, theM shell of
metallic aluminum is vacant in the temperature rakge < 10 eV and the corre-
sponding bound-state features are absent.



20 W. R. Johnson, J. Nilsen and K. T. Cheng

Elastic scattering from bound and screening electrone&dd here following
the model proposed by Gergori et al. [3] which makes use afifdas for the static
ion-ion structure functiors;(k) given by Arkhipov and Davletov [35]. Modifica-
tions suggested in Ref. [8] to account for different elec@®ad ion temperatures are
also included. Specifically, in the applications considdrere, the amplitude of the
elastic peak is adjusted artificially by choosing an ion terajure that is different
from the electron temperature, even in cases where equititis expected. Such an
adjustment was used to fit the experimental data for berglghown in Fig. 8. The
dynamic structure function for scattering from free elent depends sensitively on
the free-electron dielectric functiaak, w). Again, we follow the model proposed
in Ref. [3] and evaluate the dielectric function in the ramdphase approximation.
The RPA dielectric function includes features such as ptasrasonant peaks that
show up in experimental intensity profiles and can be use@immection with the
principle of detailed balance to determine electron temfpees. Bound-state fea-
tures are easily included in the present scheme, inasmubhk aserage-atom model
provides bound-state and continuum wave functions. lomial@nb-field effects
are features of calculations carried out using average+-atave functions rather
than plane waves to describe the final state electrons. lalesion, the average-
atom model provides a simple and consistent point of depaftu the theoretical
analysis of Thomson scattering from plasmas.
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