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Average-Atom Model for X-ray Scattering from
Warm Dense Matter

W. R. Johnson, J. Nilsen and K. T. Cheng

Abstract A scheme for analyzing Thomson scattering of x-rays by warm dense
matter, based on the average-atom model, is developed. Emphasis is given to x-ray
scattering by bound electrons. Contributions to the scattered x-ray spectrum from
elastic scattering by electrons moving with the ions and from inelastic scattering
by free and bound electrons are evaluated using parameters (chemical potential,
average ionic charge, free electron density, bound and continuum wave functions,
and occupation numbers) taken from the average-atom model.The resulting scheme
provides a relatively simple diagnostic for use in connection with x-ray scattering
measurements. Applications are given to dense hydrogen, beryllium, aluminum, ti-
tanium, and tin plasmas. At high momentum transfer, contributions from inelastic
scattering by bound electrons are dominant features of the scattered x-ray spectrum
for aluminum, titanium, and tin.

1 Introduction

Measurements of Thomson scattering of x-rays provide information on tempera-
tures, densities and ionization balance in warm dense matter. Various techniques
for inferring plasma properties from x-ray scattering measurements have been de-
veloped over the past decade [1–22]. Many of these techniques, together with the
underlying theory, were reviewed by Glenzer and Redmer in Ref. [23].

The present average-atom scheme is based on a theoretical description of x-ray
scattering proposed by Gregori [3], the important difference being that parame-
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ters used to evaluate the Thomson-scattering dynamic structure function are taken
from the average-atom model. The average-atom model used here was introduced
in Ref. [24] to study electromagnetic properties of plasmas. The scheme developed
here to analyze Thomson scattering is closely related to that of Sahoo et al. [25],
where a somewhat different version of the average-atom model was used. Predic-
tions from the present model differ substantially from those in Ref. [25]. The origin
and consequences of these differences will be discussed later.

The Thomson scattering cross section for an incident photonwith energy, mo-
mentum (̄hω0, h̄kkk0), and polarizationεεε0 scattering to a state with energy, momentum
(h̄ω1, h̄kkk1), and polarizationεεε1 is

dσ
dh̄ω1dΩ

=

(

dσ
dΩ

)

Th

ω1

ω0
S(k,ω), (1)

where
(

dσ
dΩ

)

Th
= |εεε0 · εεε1|

2
(

e2

mc2

)2

. (2)

The dynamic structure function S(k,ω) appearing in Eq. (1) depends on two vari-
ables:k = |kkk0 − kkk1| andω = ω0−ω1. As shown in the seminal work of Chihara
[26, 27],S(k,ω) can be decomposed into three terms: the firstSii(k,ω) is the con-
tribution from elastic scattering by electrons that followthe ion motion, the second
See(k,ω) is the contribution from scattering by free electrons, and the thirdSb(k,ω)
is the contribution from bound-free transitions (inelastic scattering by bound elec-
trons) modulated by the ionic motion. The modulation factoris ignored here when
evaluating the bound-free contribution. For the bound-free scattering, calculations
are carried out using both average-atom final states and plane-wave final states. Sub-
stantial differences are found between average-atom and plane-wave calculations,
particularly in the low-momentum transfer region of the scattered x-ray spectrum.

The average-atom model is discussed in Sec. 2 followed by a discussion of the
three contributions to the structure functions in Sec. 3. InSec. 4, applications are
given to hydrogen, beryllium, aluminum, titanium, and tin plasmas.

2 Average-Atom Model

The average-atom model is a quantum mechanical version of the temperature-
dependent Thomas-Fermi model of a plasma developed sixty-three years ago by
Feynman, Metropolis and Teller [28]. In this model, the plasma is divided into neu-
tral Wigner-Seitz (WS) cells (volume per atomVWS = A/ρNA, whereA is the atomic
weight,ρ is the mass density, andNA is Avogadro’s number). Inside each WS cell
is a nucleus of chargeZ andZ electrons. Some of these electrons are in bound states
and some in continuum states. The continuum density is finiteat the cell bound-
ary and merges into the uniform free-electron densityne = Z f /VWS outside the cell,
whereZ f is the number of free electrons per ion. Each neutral cell can, therefore, be
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Fig. 1 Main plot: The radial density 4πr2n(r) in a.u. for metallic Al atkBT = 5 eV (solid black
curve) integrates toZ = 13 for r ≤ RWS = 2.991a0. The continuum contribution 4πr2nc(r) (dashed
red curve), also in a.u., integrates to 3 forr ≤ RWS. The bound 1s, 2s, and 2p shells are completely
occupied at this temperature. Inset: The dashed red curve illustrates the Friedel oscillations of the
continuum density and shows howNc(r) = nc(r)VWS converges toZ f = neVWS (solid green line) for
r > RWS. The chemical potential predicted by the model isµ = 0.2406 a.u. and the number of free
electrons per ion isZ f = 2.146.

regarded as an ion imbedded in a uniform sea of free electrons. To maintain over-
all neutrality, it is necessary to introduce a uniform (but inert) positive background
densityZ f /VWS. The model, therefore, describes an isolated (neutral) ionfloating in
a (neutral) “jellium” sea.

The quantum-mechanical model here, which is discussed in Ref. [24], is a non-
relativistic version of theInferno model of Liberman [29] and the more recentPur-
gatorio model of Wilson et al. [30]; it is similar to the nonrelativistic average-atom
model described by Blinski and Ishikawa [31]. Specifically,each electron in the ion
is assumed to satisfy the central-field Schrödinger equation

[

p2

2
−

Z
r

+V

]

ψa(rrr) = εa ψa(rrr), (3)

wherea = (n, l) for bound states or(ε, l) for continuum states. Atomic units (a.u.)
wheree = h̄ = m = 4πε0 = 1 are used here. In particular, 1 a.u. in energy equals 2
Rydbergs (27.211 eV), and 1 a.u. in length equals 1 Bohr radiusa0 (0.529Å).

The wave functionψa(rrr) is decomposed in a spherical basis as

ψa(rrr) =
1
r

Pa(r)Ylama(r̂)χσa , (4)

whereYlm(r̂) is a spherical harmonic andχσ is a two-component electron spinor.
The bound and continuum radial functionsPa(r) are normalized as
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∫ ∞

0
dr Pnl(r)Pn′l(r) = δnn′ , (5)

∫ ∞

0
dr Pεl(r)Pε ′l(r) = δ (ε − ε ′), (6)

respectively. The central potentialV (r) in Eq. (3) is taken to be the self-consistent
Kohn-Sham potential [32]

V (r) = 4π
∫

1
r>

r′2 n(r′)dr′−

[

3
π

n(r)

]
1
3

, (7)

where the first term in the right-hand side is the direct screening potential with
r> = max(r, r′) and the second term is the Kohn-Sham exchange potential. While
electron-electron interactions inside the Wigner-Seitz cells are reasonably well ac-
counted for by this simple model, it should be noted that eigenvalues in the Kohn-
Sham potential are poor approximations to ionization energies, leading to inaccurate
thresholds and peaks of bound-free contributions toS(k,ω), which can differ from
experiment by 20 – 30%. The electron densityn(r) in Eq. (7) has contributions from
bound statesnb(r) and from continuum statesnc(r),

n(r) = nb(r)+ nc(r). (8)

The bound-state contribution to the densitynb(r) is

4πr2nb(r) = ∑
nl

2(2l +1)

1+exp[(εnl − µ)/kBT ]
Pnl(r)

2, (9)

whereεnl is the bound-state energy,µ is the chemical potential, and the sum over
(n, l) ranges over all bound subshells. The continuum contribution to the density
nc(r) is given by

4πr2nc(r) = ∑
l

∫ ∞

0
dε

2(2l +1)

1+exp[(ε − µ)/kBT ]
Pεl(r)

2. (10)

Finally, the chemical potentialµ is chosen to ensure charge neutrality inside the WS
cell:

Z =
∫

r≤RWS

n(r)d3r ≡
∫ RWS

0
4πr2n(r)dr . (11)

Equations (3–11) above are solved self-consistently to give the chemical potential
µ , the potential energy functionV (r) and the electron densityn(r).

The upper limit in Eq. (9) is determined by systematic trial and error. The val-
ues ofn and l are increased starting fromn = 1 andl = 0. If a state is bound, it
is included in the sum, otherwise not. At metallic densitiesand temperatures below
100 eV (warm dense matter) fewer than a dozen states typically bind. To carry out
the sum-integral in Eq. (10) for the continuum density, we typically use 12 partial
waves (l) and 40 to 50 energy points (ε) for each partial wave. The energy grid for
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Table 1 Aluminum at density 2.70 g/cc andkBT = 5 eV. Bound-state and continuum partial-wave
occupation numbers inside the WS sphere are given, along with bound-state eigenenergies. The
Ne-like core is seen to be almost completely occupied. The sum of the bound-state and continuum
occupation numbers is preciselyZ = 13.

Bound States Continuum
State occ# ε(eV) l occ#

1s 2.0000 -1485.07 0 0.9130
2s 2.0000 -92.16 1 1.3263
2p 5.9998 -54.87 2 0.6192

3 0.1173
4 0.0209
5 0.0031
6 0.0004
7 0.0000

Nb 9.9998 Nc 3.0002

the integral in Eq. (10) is chosen using a modified Gauss-Laguerre scheme. Thus,
one is faced with solving a system of roughly 500 coupled second-order differen-
tial equations. These equations are solved iteratively using a predict-correct scheme
based on Adam’s method [33, Chap. 2.3].

The boundary conditions used in solving Eq. (3) deserve somemention. Bound-
state wave functions and their derivatives are matched at the boundaryr = RWS to
solutions outside the WS sphere (whereV = 0) that vanish exponentially asr → ∞.
Similarly, continuum functions and their derivatives are matched to phase-shifted
free-particle wave functions atr = RWS. It should be noticed that the continuum den-
sity nc(r) inside the WS sphere, which oscillates as predicted by Freidel [34], is
distinctly different from the uniform free electron density ne. In the present model,
nc(r) smoothly approachesne outside the sphere. These points are illustrated in
Fig. 1, where the bound-state and continuum densities are plotted for Al at metallic
density and temperaturekBT = 5 eV. Occupation numbers of bound states and con-
tinuum partial-wave states inside the WS sphere are given along with bound-state
eigenvalues in Table 1.

The boundary conditions used here differ from those used by Sahoo et al. in
Ref. [25], where the first derivative of the wave function is required to vanish atRWS.
The differences in boundary conditions lead to major differences in the average-
atom structure. For example, the model used in Ref. [25] predicts that theM shell of
metallic Al is partially occupied at temperatureskBT ≤ 10 eV, whereas the present
model predicts that theM shell is empty in this temperature range. Consequences of
such differences are discussed later in Sec. 4.
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3 Dynamic Structure Function

As noted in the introduction, the theoretical model developed by Gregori et al. [3],
with input from the average-atom model, is used here to evaluate the dynamic struc-
ture functionS(k,ω). The ion-ion contributionSii(k,ω) is evaluated in terms of
Fourier-transforms of electron densities and formulas forthe static ion-ion structure
function Sii(k) are given in Ref. [35]. We use versions of the formulas forSii(k)
that include options discussed in Ref. [8] for different electron and ion tempera-
tures. The dominant effect of different electron and ion temperatures is to modify
the relative size of elastic to inelastic contributions toS(k,ω). The use of different
temperatures is, therefore, a convenient tool for fitting experimental data, even in
cases where equilibrium is reached. The inability to fit experimental data in some
equilibrium cases without such an artifice is a weakness in the present scheme and
is the subject of current research. The electron-electron contributionSee(k,ω) is ex-
pressed in terms of the dielectric functionε(k,ω) of the free electrons which in turn
is evaluated using the random-phase approximation (RPA). Plasmon resonances are
present inSee(k,ω) at low momentum transfersk. Finally, bound-state contribu-
tions to the dynamic structure function are evaluated usingaverage-atom bound-
state wave functions for the initial state. The final-state continuum wave function is
described in two different ways: (1) approximating the final-state by a plane wave as
in Ref. [25], and (2) using an average-atom final-state that approaches a plane wave
asymptotically. There are dramatic differences between these two choices especially
at low momentum transfers. The more realistic average-atomchoice automatically
includes ionic Coulomb-field effects.

3.1 Ion-Ion Structure Function

The contribution to the dynamic structure function from elastic scattering by elec-
trons following the ion motionSii(k,ω) is expressed in terms of the corresponding
static ion-ion structure functionSii(k) as:

Sii(k,ω) = | f (k)+ q(k)|2 Sii(k)δ (ω). (12)

In the above,f (k) is the Fourier transform of the bound-state density andq(k) is
the Fourier transform of the density of electrons that screen the ionic charge. In the
average-atom approximation, the screening electrons are the continuum electrons
inside the Wigner-Seitz sphere and

f (k)+ q(k) = 4π
∫ RWS

0
r2 [nb(r)+ nc(r)] j0(kr)dr, (13)

where j0(z) is a spherical Bessel functions of order 0. Note thatf (0)+ q(0) = Z in
the average-atom model. In the applications discussed later, δ (ω) is replaced by an
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Fig. 2 Left panel:Sii(k) is shown for Be metal at electron temperaturekBTe = 20 eV and ion-
electron temperature ratiosTi/Te = (1, 0.5, 0.1) illustrated in solid, short-dashed and long dashed
curves , respectively. The valuek = 0.543 corresponds to an incident photonω0 = 2960 eV scattered
at angle 40◦. Right panel:Sii(k,ω) in a.u. for Be metal atkBTe = 20 eV andTi/Te = 0.1, where
the functionδ (ω) is replaced by a Gaussian of width 10 eV andω1 = ω0−ω is the energy of the
scattered x-ray.

?instrumental? Gaussian, with full-width at half maximum =10 eV. This value is
chosen because typical experiments in Be [13] utilize a spectrometer with a 10-eV
instrument width and use a Cl Ly-α source at 2.96 keV.

Approximate schemes to evaluate the static structure functions Sii(k) are dis-
cussed, for example, in Ref. [36]. Here, we follow Gregori etal. [3] and make use
of formulas given by Arkhipov and Davletov [35] that accountfor both quantum-
mechanical and screening effects. The functionSii(k) in Ref. [35] is expressed in
terms of the Fourier transform of the ion-ion interaction potentialΦii(r) through the
relation:

Sii(k) = 1−
ni

kBT
Φii(k). (14)

Different Electron and Ion Temperatures

In the average-atom model,T is the electron temperatureTe which, in equilibrium, is
equal to the ion temperatureTi. To allow for different electron and ion temperatures,
the equations forSii(k) given by Arkhipov and Davletov [35] are modified following
the prescription laid out by Gregori et al. [8]. The electrontemperatureTe is replaced
by an effective temperatureT ′

e that accounts for degeneracy effects at temperatures
lower than the Fermi temperatureTF . Similarly, the ion temperatureTi is replaced by
an effective temperatureT ′

i that accounts for ion degeneracy effects at temperatures
lower than the ion screened Debye temperatureTD. Explicit formulas forSii(k) are
found in Ref. [8]. The dramatic effect of different electronand ion temperatures on
the static structure functionsSii(k) for metallic Be atTe = 20 eV are illustrated in
the left panel of Fig. 2. This figure is similar to the upper-left panel of Fig. 1 in
Ref. [8], which was obtained under similar condition. In theright panel of Fig. 2,
contributions toSii(k,ω) for Be atTe = 20 eV andTi = 2 eV are shown.
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3.2 Electron-Electron Structure Function

The electron-electron structure functionSee(k,ω) is expressed in terms of the free-
electron dielectric functionε(k,ω) through the relation Eq. (42) in Ref. [27]:

See(k,ω) = −
1

1−exp(−ω/kBT )

k2

4π2ne
Im

[

1
ε(k,ω)

]

. (15)

We follow Gregori et al. [3] and evaluate the dielectric function in the random-
phase approximation (RPA):

ε(k,ω) = 1+
4

πk2

∫ ∞

0
F (p) p2d p

×

∫ 1

−1
dµ

[

1
k2−2pkµ +2ω + iν

+
1

k2 +2pkµ −2ω − iν

]

, (16)

where

F (p) =
1

1+exp[(p2/2− µ)/kBT ]
(17)

is the free-electron Fermi distribution. The chemical potential µ is obtained from the
average-atom model. It should be noted that the RPA dielectric function reduces to
the Lindhard dielectric function [37, 38] in the limitkBT → 0, whereF (p) reduces
to a unit step function that vanishes forp > kF . In the finiteT case, we find

∫ 1

−1

dµ
k2−2pkµ +2ω + iν

=
1

2pk
ln

[

k2 +2pk +2ω + iν
k2−2pk +2ω + iν

]

(18)

∫ 1

−1

dµ
k2 +2pkµ −2ω − iν

=
1

2pk
ln

[

k2 +2pk−2ω− iν
k2−2pk−2ω− iν

]

. (19)

From the above expressions, it is clear that Re[ε(k,ω)] is an even function ofω and
that Im[ε(k,ω)] is an odd function ofω . Therefore, we can limit ourselves to cases
whereω is positive. Forω > 0, one obtains in the limitν → 0+,

lim
ν→0

{

ln

[

k2 +2pk +2ω + iν
k2−2pk +2ω + iν

]

+ ln

[

k2 +2pk−2ω− iν
k2−2pk−2ω− iν

]}

= ln

∣

∣

∣

∣

k2 +2pk +2ω
k2−2pk +2ω

∣

∣

∣

∣

+ ln

∣

∣

∣

∣

k2 +2pk−2ω
k2−2pk−2ω

∣

∣

∣

∣

+ iπ only in the interval|k2−2ω | ≤ 2pk ≤ k2 +2ω . (20)

It follows that
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Fig. 3 Left panel: Real and Imaginary parts of the dielectric function ε(k,ω) are plotted along
with −Im[1/ε ] for coherent scattering of a 2960-eV photon at 20◦ from Be metal atkBT = 18 eV.
Right panel: The resulting electron-electron structure function See(k,ω) (solid line) is shown to-
gether withSii(k,ω) (dashed line) which has an instrumental width of 10 eV. In this example
k = 0.2757 a.u. andω1 = 2960−ω (eV) is the energy of the scattered x-ray.

Re[ε(k,ω)] = 1+
2

πk3

∫ ∞

0
F (p) pd p

×

[

ln

∣

∣

∣

∣

k2 +2pk +2ω
k2−2pk +2ω

∣

∣

∣

∣

+ ln

∣

∣

∣

∣

k2 +2pk−2ω
k2−2pk−2ω

∣

∣

∣

∣

]

(21)

and

Im[ε(k,ω)] =
2
k3

∫ b

a
F (p) pd p =

2kBT
k3 log

[

1+exp[(µ −a2/2)/kBT ]

1+exp[(µ −b2/2)/kBT ]

]

(22)

with a = |2ω − k2|/2k and b = (2ω + k2)/2k. From Eq. (15) and the fact that
Im[1/ε(k,ω)] is an odd function ofω , it follows that

See(k,ω) = exp(ω/kBT )See(k,−ω). (23)

Therefore, in the absence of bound-state contributions, measuring the cross-section
ratio at down-shifted and up-shifted plasmon peaks, provides an experimental
method for determining the plasma temperature.

The real and imaginary parts ofε(k,ω), along with−Im[1/ε(k,ω)], are shown
in the left panel of Fig. 3 for Be metal at temperaturekBT = 18 eV. A plasmon
peak, associated with coherent scattering of the incident x-ray by the electrons in
the plasma, is seen nearω = 20 eV, where the real part of the dielectric function
vanishes. The corresponding structure functionSee(k,ω), illustrating up- and down-
shifted plasmon features, is shown in the right-hand panel.For comparison pur-
poses, the elastic-scattering structure functionSii(k,ω) is also shown in the right-
hand panel. The functions displayed in this plot correspondto scattering of an inci-
dent 2960-eV photon at an angle 20◦. The classical plasma frequency for this case
(ne = 2.05×1023 cc−1) is ωpl = 16.8 eV.
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Fig. 4 Left panel: Real and Imaginary parts of the dielectric function ε(k,ω) are plotted along
with −Im[1/ε ] for incoherent scattering of a 2960-eV photon at 90◦ from Be metal atkBT = 18 eV.
Right panel: The electron-electron structure functionSee(k,ω) (solid line) is shown together with
Sii(k,ω) (dashed line) which is assumed to have an instrumental widthof 10 eV. The corresponding
momentum transfer isk = 1.123 a.u. andω1 = 2960−ω (eV) is the energy of the scattered x-ray.

The amplitude and width of plasmon peaks is governed by the coherence param-
eterα = 1/(λsk), defined in Eqs. (5-7) of Ref. [23]. Here,λs is the shielding length
given by

λs =

√

kBT F1/2(µ/kBT )

4πneF−1/2(µ/kBT )
, (24)

whereFj(x) is a complete Fermi-Dirac integral,

Fν(x) =
1

Γ (1+ ν)

∫ ∞

0
dy

yν

1+exp(y− x)
. (25)

For the example shown in Fig. 3, the screening lengthλs = 1.440 and the cor-
responding coherence parameterα = 2.520, so one expects and observes plasmon
resonances. At values ofα less than than one, coherent scattering by the plasma
no longer occurs and the plasmon peak in the dielectric function disappears. An
example of this behavior is illustrated in Fig. 4, where the dielectric function for
scattering of a 2960-eV photon at 90◦ from Be metal atkBT = 18 eV is illustrated.
The screening radius in this case remains unchangedλs = 1.440, but the momentum
transfer increases tok = 1.123 and the resulting coherence parameter isα = 0.6188.
Therefore, as expected, all signs of plasmon resonances areabsent inSee(k,ω).

3.3 Bound-Free Structure Function

The contribution to the dynamic structure function for Thomson scattering from
ionic bound statesSb(k,ω) is the sum over contributions from individual subshells
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with quantum numbers(n, l):

Sb(k,ω) = ∑
nl

Snl(k,ω) (26)

Snl(k,ω) =
onl

2l +1∑
m

∫

pdΩp

(2π)3

∣

∣

∣

∣

∫

d3r ψ†
ppp(rrr)eikkk·rrr ψnlm(rrr)

∣

∣

∣

∣

2

εp=ω+εnl

, (27)

whereonm is the fractional occupation number of subshell(n, l), andkkk = kkk0− kkk1

andω = ω0 −ω1 are the momentum and energy transfers, respectively, from the
incident to the scattered photon as defined in Eq. (1). In the above,ψppp(rrr) is an
average-atom wave function that approaches a plane waveeippp···rrr asymptotically. We
consider two cases below: firstly, the case whereψppp(rrr) is approximated by a plane
wave and secondly, the case whereψppp(rrr) is an average-atom scattering function that
approaches a plane wave asymptotically.

Plane-wave final states

Approximating the final state wave function by a plane waveψppp(rrr) = eippp·rrr, the
bound-free structure function in Eq. (27) can be rewritten as

Snl(k,ω) =
onl

2l +1∑
m

∫

pdΩp

(2π)3

∣

∣

∣

∣

∫

d3r eiqqq·rrr ψnlm(rrr)

∣

∣

∣

∣

2

, (28)

whereεp = ω + εnl andqqq = kkk− ppp. Note thatqqq is the momentum transferred to the
ion. This expression may be simplified to

Snl(k,ω) =
onl

πk

∫ p+k

|p−k|
qdq |Knl(q)|2, (29)

Knl(q) =

∫ ∞

0
r dr jl(qr)Pnl(r). (30)

Snl(k,ω) in Eq. (29) depends implicitly onω through the relation

p =
√

2(ω + εnl) .

Average-atom final states

In the average-atom approach, the final state wave function consists of a plane wave
plus anincoming spherical wave. (N.B. An outgoing spherical wave is associated
with an incident electron. Time-reversal invariance, therefore, requires that a con-
verging spherical wave be associated with an emerging electron.) The scattering
wave functionψppp(rrr) in Eq. (27) may be written
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Fig. 5 The berylliumK-shell structure functionS1s(k,ω) is shown for incident photon energy
2960 eV and scattering angles 30◦ and 150◦. The black curves show plane-wave results, the
blue lines show the result obtained using an average-atom final-state wave function and the red
lines show exact nonrelativistic Coulomb results. The dramatic suppression of average-atom and
Coulomb structure functions at forward angles (the corresponding curves are multiplied by 10) is
evident in the left panel.

ψppp(rrr) =
4π
p ∑

l1m1

i l1e−iδl1
1
r

Pεl1(r)Y ∗
l1m1

(p̂)Yl1m1(r̂), (31)

where the continuum wave function is normalized to a phase-shifted sine wave
asymptotically

Pεl(r) → sin(pr− lπ/2+ δl). (32)

The factoreikkk···rrr in Eq. (27) is expanded as

e1kkk···rrr = 4π ∑
l2m2

i l2 jl2(kr)Y ∗
l2m2

(k̂)Yl2m2(r̂). (33)

The bound-free structure function in Eq. (27) may then be expressed as

Snl =
onl

2l +1

∫

pdΩp

(2π)3 ∑
m
|Jnlm|

2 , (34)

where

Jnlm =
(4π)2

p ∑
l1l2

i l2−l1 Il1l l2(p,k) ∑
m1m2

〈l1m1|Ylm|l2m2〉Yl1m1(p̂)Y ∗
l2m2

(k̂), (35)

with

Il1l l2(p,k) =
1
p

eiδl1
(p)

∫ ∞

0
drPεl1(r)Pnl(r) jl2(kr) (36)

and
〈l1m1|Ylm|l2m2〉 =

∫

dΩ Y ∗
l1m1

(r̂)Ylm(r̂)Yl2m2(r̂). (37)
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SquaringJnlm, integrating over angles ofppp, and summing over magnetic quantum
numbers, one obtains

Snl =
2p
π

onl ∑
l1l2

Al1l l2

∣

∣Il1l l2(p,k)
∣

∣

2
(38)

where

Al1l l2 = (2l1 +1)(2l2+1)

(

l1 l l2
0 0 0

)2

. (39)

In Fig. 5, several calculations of the structure functionS1s(k,ω) are compared
for a photon of incident energy 2960 eV scattered at 30◦ (k = 0.411 a.u.) and 150◦

(k = 1.533 a.u.) from theK shell of beryllium metal atkBT = 20 eV. The results of
calculations carried out using average-atom final states are smaller than those us-
ing plane-wave final states by a factor of about 40 atθ = 30◦ and 2.5 atθ = 150◦.
This suppression is a characteristic Coulomb field effect. Indeed, exact nonrelativis-
tic Coulomb-field calculations of Thomson scattering [39],with nuclear charge ad-
justed to align the Coulomb and average-atom thresholds, illustrated by the curves
labeled “Coulomb” in Fig. 5, show a similar suppression.

The situation is quite different at much higher momentum transfer. This fact is
illustrated in the left panel of Fig. 6, where we consider scattering of an 18-keV
photon at 130◦ (k = 8.750 a.u.) from Be metal atkBT = 12 eV. The solid black curve
shows the bound-state contribution to theS(k,ω) evaluated using an average-atom
final state, while the dashed green line shows the contribution evaluated using a
plane-wave final state. In this high-momentum transfer case, the two calculations
differ qualitatively near threshold and the peak energies differ by a few percent, but
the average-atom and plane-wave results are otherwise quite similar.

In the right panel of Fig. 6, we consider a more complex example, scattering of a
9300-eV x-ray at 130◦ (k = 4.521 a.u.) from tin metal atkBT = 10 eV. Contributions
from individual subshells are shown together with their sumSb(k,ω).

4 Applications

The scheme developed in the previous sections is applied to several examples of
current or possible future interest. The example of hydrogen at electron density
1024 cc−1 and temperature 50 eV is considered first. In this example, the H ion
is completely stripped and inelastic scattering is determined completely by the
See(k,ω). The plasmon resonances present in the hydrogen spectrum atforward
scattering angles fade rapidly with increasing angle. The case of beryllium metal at
18 eV, which has been well studied both theoretically and experimentally, is con-
sidered next and good agreement is found between average-atom predictions and
experimental data. For beryllium, the bound-state contribution is small and beyond
the range of available experimental data. As a third example, calculations ofS(k,ω)
for scattering of 9.3-keV and 3.1-keV x-rays from aluminum metal atkBT = 5 eV
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Fig. 6 Left panel: The dynamic structure function for the 1s state of Be metal atkBT = 12 eV
is shown for scattering of an incident x-ray with energyω0 = 18-keV x-ray at 130◦. The solid
black and dashed green lines are results calculated using average-atom and plane-wave final states,
respectively. The dashed red line is the elastic scatteringcontributionSii(k,ω) with instrumental
width 10 eV. Right panel: The total bound-free dynamic structure functionSb(k,ω) with average-
atom final states is shown for tin (Z = 50) at metallic density andkBT = 10 eV is shown, along
with contributions from individual subshells. The incident x-ray energy isω0 = 9.3 keV and the
scattering angle is 130◦. In the above,ω1 = ω0−ω is the energy of the scattered x-ray.

are evaluated and compared with the average-atom predictions by Sahoo et al. [25].
Finally, Thomson scattering of 9.3-keV x-rays from titanium and tin at 30◦and 130◦

are considered to illustrate cases where bound-state contributions are the dominant
features of the scattered x-ray spectrum. In Table 2, we listsome important average-
atom properties for the elements considered in the following subsections.

4.1 Hydrogen

In the average-atom model, a densityρ = 1.931 g/cc is required atkBT = 50 eV
to achieve free-electron densityne = 1024 cc−1. Physical properties of the plasma
under these conditions are listed in the second column of Table 2. The single elec-
tron in hydrogen is completely stripped, leaving only the continuum inside the WS
sphere. The continuum densitync(r) merges into the uniform free-electron den-

Table 2 Average-atom parameters for the examples of hydrogen, beryllium, aluminum, titanium,
and tin presented in Sec. 4.

H Be Al Ti Sn
kBT (eV) 50 18 5 10 10
ρ (g/cc) 1.931 1.635 2.700 4.540 7.310
RWS (a0) 1.118 2.452 2.991 3.044 3.515
µ (a.u.) 1.091 -0.531 0.241 -0.044 -0.071
Nbound 0 1.966 10.000 17.341 45.622
Ncont 1 2.036 3.000 4.659 4.378
Z f 0.867 1.647 2.146 2.322 3.374
ne (1023 cc−1) 10 1.800 1.292 1.326 1.251
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Fig. 7 Left panel: The continuum densitync(r) inside the WS sphere for hydrogen atkBT = 50 eV
and density 1.931 g/cc is seen to converge smoothly to the free-electron densityne = 1024 cm−3

beyond the WS radiusRWS. Right panel: The dynamic structure functionS(k,ω) for H at kBT =
50 eV andne = 1024 cm−3 is plotted for scattering of a 5-keV photon at angles 20◦, 30◦ and 40◦,
andω1 = 5−ω (keV) is the energy of the scattered x-ray.

sity ne outside the sphere. The total number of electrons inside theWS sphere
Nc = 4π

∫ RWS
0 r2nc(r)dr = 1, however, the number of free electrons per ion is

Z f = 0.867. These points are illustrated in the left panel of Fig, 7.
Since there are no bound electrons, onlySee(k,ω) contributes to the inelastic

scattering. The dynamic structure functions for scattering of a 5-keV x-ray at angles
20◦, 30◦ and 40◦ are shown in the right panel of Fig. 7. The prominent plasmon
peaks atθ = 20◦ wash out at as the scattering angle (and momentum transferk)
is increased. For this particular case, the screening length λs = 1.071 a.u. differs
only slightly from the WS radiusRWS = 1.118 a.u.. The values of the coherence
parameterα for θ = (20◦, 30◦, 40◦) areα = (2.005, 1.345, 1.018), respectively.
The resonant features in Fig. 7 are seen to be distinct forα > 1 but disappear as
α approaches 1. It should be noted that the (unperturbed) plasma frequency for
hydrogen atne = 1024 cm−3 is ωpl = 37.1 eV.

4.2 Beryllium

In the left panel of Fig. 8, the dynamic structure function for scattering of a 2963-
eV photon at 40◦ from beryllium (density = 1.635 g/cc) atkBT = 18 eV is shown.
TheL-shell electrons are completely stripped under these conditions but theK shell
remains 97% occupied. The ion temperature, which governs the amplitude of the
elastic peak, is chosen to be 2.1 eV in this example. For the case at hand, the coher-
ence parameter isα = 1.21> 1, so one expects and observes plasmon peaks in the
scattering intensity profile. In the average-atom approximation, the threshold energy
for bound-state contributions is the average-atom eigenvalue ε1s = −86.8 eV. (As
mentioned earlier, average-atom eigenvalues are inaccurate approximations to re-
moval energies. The average-atom threshold|ε1s| is 20% smaller than the measured
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Fig. 8 Left panel: Structure functionS(k,ω) for scattering of a 2963-eV photon at 40◦ from beryl-
lium at ne = 1.8× 1023 cm−1 and electron temperature 18 eV. The bound-state contribution is
scaled up by a factor of 50. Right panel: Intensities (arbitrary units) for scattering of a Cl Ly-α
x-ray from beryllium at 40◦ [41]; measured data (black solid line), source function (blue dashed
line), and the average-atom fit (red solid line). In the above, ω1 is the energy of the scattered x-ray.

K-shell threshold 111 eV in beryllium metal [40].) In the average-atom approxima-
tion, bound-state contributions toS(k,ω) from K-shell electrons have a threshold at
ω1 = 2963−86.8= 2876.2 eV. TheK-shell contribution multiplied by 50 is shown
in the left panel. The average-atom parameters used in this calculation are listed in
column three of Table 2.

To validate the present average-atom model against experimental data, a Be ex-
periment done at the Omega laser facility that used a Cl Ly-α source to scatter from
nearly solid Be at an angle of 40◦ is used. An electron temperature of 18 eV, ion tem-
perature of 2.1 eV, and density of 1.635 g/cc used in the average-atom model gives
an electron density of 1.8×1023 cc−1, in agreement with the analysis in Ref. [41].
The right panel of Fig. 8 shows the experimental source function from the Cl Ly-α
line as a blue dashed line. Because of satellite structure inthe source we approx-
imate the source by three lines: a Cl Ly-α line at 2963 eV with amplitude 1 and
two satellites at 2934 and 2946 eV with relative amplitudes of 0.075 and 0.037,
respectively. Doing the Thomson scattering calculation using the three weighted
lines, we calculate the scattering amplitude for Thomson scattering (red solid line)
and compare against the experimental data (black solid line) here. We observe ex-
cellent agreement within the experimental noise. Contributions from the bound 1s
electrons, which have a threshold at 2876 eV, are beyond the range of the data shown
in the right panel.

4.3 Aluminum

As mentioned in the introduction, the present average-atomcalculations disagree
in various ways with those in Ref. [25], where Thomson scattering from aluminum
metal at several temperatures was considered. To clarify the differences, we compare
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results of the present calculations for the case of aluminumat kBT = 5 eV with the
corresponding results presented in Ref. [25]. The dimensionless productS(k,ω)ωpl

is shown for scattering of 9300-eV and 3100-eV x-rays in the left and right pan-
els of Fig. 9, respectively. The upper and lower panels of Fig. 9 show results for
scattering angles of 30◦ and 130◦, respectively. The plots in Fig. 9 can be compared
directly with those in Fig. 6 and Fig. 7 of [25], where similarplots for 9300-eV
and 3100-eV x-ray energies can be found. The size and shape ofthe free-electron
contributions shown in Fig. 9 are in agreement with those shown in the correspond-
ing figures in [25], however, theL-shell contributions toS(k,ω) in [25] are larger
by a factor of approximately 5 than those shown in Fig. 9. Moreover, contributions
from theM shell, which dominate the spectrum just below the elastic peak in [25]
are completely absent in Fig. 9. Owing to the differences in bound-free contribu-
tionsSb(k,ω), the present prediction for the aluminum dynamic structurefunction
S(k,ω) differs in both size and shape from that given in [25].

Differences in boundary conditions between the two average-atom models ac-
count for the presence or absence of boundM-shell electrons as discussed in Sec. 2.
Furthermore, difference in the relative size of theL-shell contributions at forward
angles may owe in part to the use of plane-wave final states in [25]. However, the
substantial difference in size of theL-shell contributions at backward angles remains
a mystery. The average-atom parameters for aluminum used inthe present calcula-
tion are given in the fourth column of Table 2.

4.4 Titanium & Tin

The average-atom model predicts that a titanium metal at 10 eV is in an Ar-like
configuration with completely filledK andL shells together with 1.97 3s electrons
5.36 3p electrons in theM shell. This is an interesting case where contributions to
Sb(k,ω) from theL andM shells are substantial. In the left panels of Fig. 10, the
dynamic structure functionS(k,ω) is shown in the solid black line for an incident
9.3-keV x-ray scattered at 30◦ and 130◦. Contributions fromSb(k,ω) shown in the
long-dashed green lines dominate the free-electron contributionsSee(k,ω) shown
in the short-dashed red lines. As seen in the lower-left panel, sharp features associ-

Table 3 Comparison of the theoretical average-atom thresholds (−εnl) and experimental thresh-
olds from the NIST database [40] for contributions toSb(k,ω) from individual subshells in titanium
and tin.

Titanium Tin
nl theory expt. ∆% nl theory expt. ∆%
2s 512.7 563.7 9 3d 477.8 488.2 2
2p 426.8 457.5 7 4s 118.9 136.5 13
3s 45.4 60.3 25 4p 83.1 86.6 4
3p 22.8 34.6 34 4d 22.4 23.9 6

5s 2.1 – –
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Fig. 9 S(k,ω)ωpl is shown for scattering of 9300-eV and 3100-eV x-rays at 30◦ and 130◦ from Al
metal atkBT = 5 eV. The short-dashed red curves are contributionsSee(k,ω) from free electrons,
the long-dashed green curves give contributionsSb(k,ω) from bound 2s and 2p electrons and the
solid black curves show the total dynamic structure function. Instrumental widths of 0.1%ω0 were
used. For Al metal atkBT = 5 eV, the plasma frequency isωpl = 13.35 eV. In the above figure,ω1
andω0 are energies of the scattered and incident x-rays, respectively, andω = ω0−ω1.

ated with excitation of theM subshells (3p and 3s) show up just below the elastic
peak atω1 = ω0, whereas features associated with excitation of theL subshells (2p
and 2s) show up 400 to 500 eV below the elastic peak. The bound-statethresholds
for titanium are compared with measured thresholds from theNational Institute for
Standards & Technology (NIST) database [40] in Table 3.

Metallic tin at 10 eV has a Pd configuration with 45.6 bound electrons. The
resulting dynamic structure functionS(k,ω) is shown in the right panels of Fig. 10
for scattering angles of 30◦ and 130◦. The situation is similar to that for titanium;
bound-free contributions dominate those from free-electrons. The irregularities in
the bound-state contributions are associated with the onset of contributions from
individual subshells. For scattering at 130◦, contributions from individual subshells
are shown in the right panel of Fig. 6. Average-atom thresholds for tin are compared
with values from the NIST database [40] in Table 3.
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5 Summary

A scheme for analysis of Thomson scattering from plasmas based on the average-
atom model is presented. Given the plasma composition(Z,A), densityρ and tem-
peratureT , the model gives, in addition to the equation of state of the plasma, all
parameters needed for a complete description of the Thomsonscattering process. In
particular, the average-atom code predicts wave functionsfor bound and continuum
electrons, densities of bound, screening, and free electrons, and the chemical poten-
tial. Predictions of the present average-atom model disagree with those in Ref. [25]
where a similar model with different boundary conditions was used. In the average-
atom model used in Ref. [25], 3d (M shell) electrons are bound in metallic Al for
temperatures between 2 and 10 eV, leading to substantial bound-state contributions
to the dynamic structure function. In the present model, by contrast, theM shell of
metallic aluminum is vacant in the temperature rangekBT ≤ 10 eV and the corre-
sponding bound-state features are absent.
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Elastic scattering from bound and screening electrons is treated here following
the model proposed by Gergori et al. [3] which makes use of formulas for the static
ion-ion structure functionSii(k) given by Arkhipov and Davletov [35]. Modifica-
tions suggested in Ref. [8] to account for different electron and ion temperatures are
also included. Specifically, in the applications considered here, the amplitude of the
elastic peak is adjusted artificially by choosing an ion temperature that is different
from the electron temperature, even in cases where equilibrium is expected. Such an
adjustment was used to fit the experimental data for beryllium shown in Fig. 8. The
dynamic structure function for scattering from free electrons depends sensitively on
the free-electron dielectric functionε(k,ω). Again, we follow the model proposed
in Ref. [3] and evaluate the dielectric function in the random-phase approximation.
The RPA dielectric function includes features such as plasmon resonant peaks that
show up in experimental intensity profiles and can be used in connection with the
principle of detailed balance to determine electron temperatures. Bound-state fea-
tures are easily included in the present scheme, inasmuch asthe average-atom model
provides bound-state and continuum wave functions. Ionic Coulomb-field effects
are features of calculations carried out using average-atom wave functions rather
than plane waves to describe the final state electrons. In conclusion, the average-
atom model provides a simple and consistent point of departure for the theoretical
analysis of Thomson scattering from plasmas.
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