81 research outputs found

    Very-large-scale motions in rough-bed open-channel flow

    Get PDF
    Acknowledgements The study has been supported by two EPSRC/UK grants, ‘High-resolution numerical and experimental studies of turbulence-induced sediment erosion and near-bed transport’ (EP/G056404/1) and ‘Bed friction in rough-bed free-surface flows: a theoretical framework, roughness regimes, and quantification’ (EP/K041169/1). Discussions with I. Marusic and comments of three anonymous reviewers are greatly appreciated.Peer reviewedPublisher PD

    Drag forces on a bed particle in open-channel flow : Effects of pressure spatial fluctuations and very-large-scale motions

    Get PDF
    The study has been supported by two EPSRC/UK grants, ‘High-resolution numerical and experimental studies of turbulence-induced sediment erosion and near-bed transport’ (EP/G056404/1) and ‘Bed friction in rough-bed free-surface flows: a theoretical framework, roughness regimes, and quantification’ (EP/K041088/1). I.M. also acknowledges the support of the Australian Research Council.Peer reviewedPublisher PD

    The structure of gravel-bed flow with intermediate submergence: a laboratory study

    Get PDF
    The paper reports an experimental study of the flow structure over an immobile gravel bed in open channel at intermediate submergence, with particular focus on the near-bed region. The experiments consisted of velocity measurements using three-component (stereoscopic) Particle Image Velocimetry (PIV) in near-bed horizontal plane and two-component PIV in three vertical planes that covered three distinctly different hydraulic scenarios where the ratio of flow depth to roughness height (i.e., relative submergence) changes from 7.5 to 10.8. Detailed velocity measurements were supplemented with fine-scale bed elevation data obtained with a laser scanner. The data revealed longitudinal low-momentum and high-momentum "strips'' in the time-averaged velocity field, likely induced by secondary currents. This depth-scale pattern was superimposed with particle-scale patches of flow heterogeneity induced by gravel particle protrusions. A similar picture emerged when considering second-order velocity moments. The interaction between the flow field and gravel-bed protrusions is assessed using cross correlations of velocity components and bed elevations in a horizontal plane just above gravel particle crests. The cross correlations suggest that upward and downward fluid motions are mainly associated with upstream-facing and lee sides of particles, respectively. Results also show that the relative submergence affects the turbulence intensity profiles for vertical velocity over the whole flow depth, while only a weak effect, limited to the near-bed region, is noticed for streamwise velocity component. The approximation of mean velocity profiles with a logarithmic formula reveals that log-profile parameters depend on relative submergence, highlighting inapplicability of a conventional "universal'' logarithmic law for gravel-bed flows with intermediate submergence

    Heterogeneity in catchment properties: a case study of Grey and Buller catchments, New Zealand

    No full text
    International audienceThe scaling behaviour of landscape properties, including both morphological and landscape patchiness, is examined using monofractal and multifractal analysis. The study is confined to two neighbouring meso-scale catchments on the west coast of the South Island of New Zealand. The catchments offer a diverse but largely undisturbed landscape with population and development impacts being extremely low. Bulk landscape properties of the catchments (and their sub-basins) are examined and show that scaling of stream networks follow Hack's empirical rule, with exponents ?0.6. It is also found that the longitudinal and transverse scaling exponents of stream networks equate to ?l ?0.6 and ?w? 0.4, indicative of self-affine scaling. Catchment shapes also show self-affine behaviour. Further, scaling of landscape patches show multifractal behaviour and the analysis of these variables yields the characteristic parabolic curves known as multifractal spectra. A novel analytical approach is adopted by using catchments as hydrological cells at various sizes, ranging from first to sixth order, as the unit of measure. This approach is presented as an alternative to the box-counting method as it may be much more representative of hydro-ecological processes at catchment scales. Multifractal spectra are generated for each landscape property and spectral parameters such as the range in ? (Holder exponent) values and maximum dimension at ?0, (also known as the capacity dimension Dcap), are obtained. Other fractal dimensions (information Dinf and correlation Dcor) are also calculated and compared. The dimensions are connected by the inequality Dcap?Dinf?Dcor. Such a relationship strongly suggests that the landscape patches are heterogeneous in nature and that their scaling behaviour can be described as multifractal. The quantitative parameters obtained from the spectra may provide the basis for improved parameterisation of ecological and hydrological models. Keywords: fractal, multifractal, scaling, landscape, patchines

    Friction factor decomposition for rough-wall flows : theoretical background and application to open-channel flows

    Get PDF
    Financial support was provided by the EPSRC/UK project ‘Bed friction in rough-bed free-surface flows: a theoretical framework, roughness regimes, and quantification’ (grants EP/K041088/1 and EP/K04116/1). I.M. acknowledges the support of the Australian Research Council (grant FL120100017). The large-eddy simulations were carried out at Cardiff University’s high performance computer, which is part of the Supercomputing Wales project. Useful and stimulating discussions with M. Fletcher (Arup), P. Samuels (HR Wallingford), T. Schlicke (Scottish Environment Protection Agency) and J. Wicks (Jacobs) have been instrumental for this project and are gratefully acknowledged. The editor and three reviewers provided insightful comments and helpful suggestions that have been gratefully incorporated in the final version.Peer reviewedPublisher PD

    Reynolds-number Dependence of Streamwise Velocity Fluctuations in Turbulent Pipe Flow

    Get PDF
    Statistics of the streamwise velocity component in fully-developed pipe flow are examined for Reynolds numbers in the range 5.5 x 10^4 < Re_D < 5.7 x 10^6. The second moment exhibits two maxima: one in the viscous sublayer is Reynolds-number dependent while the other, near the lower edge of the log region, is also Reynolds-number dependent and follows roughly the peak in Reynolds shear stress. The behaviour of both peaks is consistent with the concept of inactive motion which increases with increasing Reynolds number and decreasing distance from the wall. No simple scaling is apparent, and in particular, so-called "mixed" scaling is no better than wall scaling in the viscous sublayer and is actually worse than wall scaling in the outer region. The second moment is compared with empirical and theoretical scaling laws and some anomalies are apparent. The scaling of spectra using y, R and u_τ is examined. It appears that even at the highest Reynolds number, they exhibit incomplete similarity only: while spectra do collapse with either inner or outer scales for limited ranges of wave number, these ranges do not overlap. Thus similarity may not be described as complete and any apparent k_1^(-1) range does not attract any special significance and does not involve universal constants. It is suggested that this is because of the influence of inactive motion. Spectra also show the presence of very long structures close to the wall

    Defining the roughness sublayer and its turbulent statistics

    Get PDF
    The roughness sublayer in a turbulent openchannel flow over a very rough wall is investigated experimentally both within the canopy and above using particle image velocimetry by gaining complete optical access with new methodologies without disturbing the flow. This enabled reliable estimates of the double-averaged mean and turbulence profiles to be obtained by minimizing and quantifying the usual errors introduced by limited temporal and spatial sampling. It is shown, for example, that poor spatial sampling can lead to erroneous vertical profiles in the roughness sublayer. Then, in order to better define and determine the roughness sublayer height, a methodology based on the measured spatial dispersion is proposed which takes into account temporal sampling errors. The results reveal values well below the usual more ad hoc estimates for all statistics. Finally, the doubleaveraged mean and turbulence statistics in the roughness sublayer are discussed

    Turbulence in Rivers

    Get PDF
    The study of turbulence has always been a challenge for scientists working on geophysical flows. Turbulent flows are common in nature and have an important role in geophysical disciplines such as river morphology, landscape modeling, atmospheric dynamics and ocean currents. At present, new measurement and observation techniques suitable for fieldwork can be combined with laboratory and theoretical work to advance the understanding of river processes. Nevertheless, despite more than a century of attempts to correctly formalize turbulent flows, much still remains to be done by researchers and engineers working in hydraulics and fluid mechanics. In this contribution we introduce a general framework for the analysis of river turbulence. We revisit some findings and theoretical frameworks and provide a critical analysis of where the study of turbulence is important and how to include detailed information of this in the analysis of fluvial processes. We also provide a perspective of some general aspects that are essential for researchers/ practitioners addressing the subject for the first time. Furthermore, we show some results of interest to scientists and engineers working on river flows
    • 

    corecore