102 research outputs found

    Cyclic strain inhibits switching of smooth muscle cells to an osteoblastâ like phenotype

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154437/1/fsb2fj020459fje.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154437/2/fsb2fj020459fje-sup-0001.pd

    Xylan decoration patterns and the plant secondary cell wall molecular architecture.

    Get PDF
    The molecular architecture of plant secondary cell walls is still not resolved. There are several proposed structures for cellulose fibrils, the main component of plant cell walls and the conformation of other molecules is even less well known. Glucuronic acid (GlcA) substitution of xylan (GUX) enzymes, in CAZy family glycosyl transferase (GT)8, decorate the xylan backbone with various specific patterns of GlcA. It was recently discovered that dicot xylan has a domain with the side chain decorations distributed on every second unit of the backbone (xylose). If the xylan backbone folds in a similar way to glucan chains in cellulose (2-fold helix), this kind of arrangement may allow the undecorated side of the xylan chain to hydrogen bond with the hydrophilic surface of cellulose microfibrils. MD simulations suggest that such interactions are energetically stable. We discuss the possible role of this xylan decoration pattern in building of the plant cell wall.We thank Nadine Anders for helpful comments on the manuscript. The work was supported by a Leverhulme Trust Programme Grant : The Centre for Natural Material Innovation and the Biotechnology and Biological Sciences Research Council grant numbers [BB/K005537/1] and [BB/G016240/1].This is the author accepted manuscript. The final version is available from Portland Press via http://dx.doi.org/10.1042/BST2015018

    Using HSV-Thymidine Kinase for Safety in an Allogeneic Salivary Graft Cell Line

    Full text link
    Extreme salivary hypofunction is a result of tissue damage caused by irradiation therapy for cancer in the head and neck region. Unfortunately, there is no currently satisfactory treatment for this condition that affects up to 40,000 people in the United States every year. As a novel approach to managing this problem, we are attempting to develop an orally implantable, fluid-secreting device (an artificial salivary gland). We are using the well-studied HSG salivary cell line as a potential allogeneic graft cell for this device. One drawback of using a cell line is the potential for malignant transformation. If such an untoward response occurred, the device could be removed. However, in the event that any HSG cells escaped, we wished to provide additional patient protection. Accordingly, we have engineered HSG cells with a hybrid adeno-retroviral vector, AdLTR.CMV-tk, to express the herpes simplex virus thymidine kinase (HSV-tk) suicide gene as a novel safety factor. Cells were grown on plastic plates or on poly-L-lactic acid disks and then transduced with different multiplicities of infection (MOIs) of the hybrid vector. Thereafter, various concentrations of ganciclovir (GCV) were added, and cell viability was tested. Transduced HSG cells expressed HSV-tk and were sensitive to GCV treatment. Maximal effects were seen at a MOI of 10 with 50 μM of GCV, achieving 95% cell killing on the poly-L-lactic acid substrate. These results suggest that engineering the expression of a suicide gene in an allogeneic graft cell may provide additional safety for use in an artificial salivary gland device.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63119/1/10763270152436463.pd

    Oxalate Oxidase Model Studies – Substrate Reactivity

    Full text link
    The synthesis and structure of [MnLCl]0.5H2O (1·0.5H2O, HL = 1‐benzyl‐4‐acetato‐1,4,7‐triazacyclononane) is reported. Complex 1 exists as a coordination polymer in the solid state, and the MnII center is bonded to three amine nitrogen atoms, one carboxylate oxygen atom, a chlorido ligand, and an adjacent carboxylate group in a chelating fashion to afford a seven‐coordinate center. The dissolution of 1 in acetonitrile containing excess oxalate (ox) ions results in a monomeric species. When mixtures of 1 and oxalate ions are exposed to oxygen under ambient conditions, a dark pink EPR‐silent species is generated. The pink species is believed to be [MnIII(ox)2]–, which results from the displacement of the ligand L– by an oxalate ion. The decomposition of this species ultimately results in the formation of 1 equiv. of CO2 per oxalate ion consumed, a HCO3– ion, and a MnII species. Further reaction of the resulting MnII species with excess oxalate in the presence of oxygen leads to additional oxalate degradation.MnLCl (HL = 1‐benzyl‐4‐acetato‐1,4,7‐triazacyclononane) is investigated as a structural and functional model for oxalate oxidase. MnLCl effects the catalytic degradation of oxalate ions under ambient conditions. MnLCl is converted to a light‐sensitive intermediate during catalysis. Analysis of the reaction mixture indicates that 1 equiv. of CO2 per oxalate ion is produced along with a HCO3– ion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110613/1/646_ftp.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/110613/2/ejic_201402835_sm_miscellaneous_information.pd

    Tissue Compatibility of Two Biodegradable Tubular Scaffolds Implanted Adjacent to Skin or Buccal Mucosa in Mice

    Full text link
    Radiation therapy for cancer in the head and neck region leads to a marked loss of salivary gland parenchyma, resulting in a severe reduction of salivary secretions. Currently, there is no satisfactory treatment for these patients. To address this problem, we are using both tissue engineering and gene transfer principles to develop an orally implantable, artificial fluid-secreting device. In the present study, we examined the tissue compatibility of two biodegradable substrata potentially useful in fabricating such a device. We implanted in Balb/c mice tubular scaffolds of poly-L-lactic acid (PLLA), poly-glycolic acid coated with PLLA (PGA/PLLA), or nothing (sham-operated controls) either beneath the skin on the back, a site widely used in earlier toxicity and biocompatibility studies, or adjacent to the buccal mucosa, a site quite different functionally and immunologically. At 1, 3, 7, 14, and 28 days postimplantation, implant sites were examined histologically, and systemic responses were assessed by conventional clinical chemistry and hematology analyses. Inflammatory responses in the connective tissue were similar regardless of site or type of polymer implant used. However, inflammatory reactions were shorter and without epithelioid and giant cells in sham-operated controls. Also, biodegradation proceeded more slowly with the PLLA tubules than with the PGA/PLLA tubules. No significant changes in clinical chemistry and hematology were seen due to the implantation of tubular scaffolds. These results indicate that the tissue responses to PLLA and PGA/PLLA scaffolds are generally similar in areas subjacent to skin in the back and oral cavity. However, these studies also identified several potentially significant concerns that must be addressed prior to initiating any clinical applications of this device.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63126/1/107632702760240562.pd

    The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana.

    Get PDF
    The interaction between xylan and cellulose microfibrils is important for secondary cell wall properties in vascular plants; however, the molecular arrangement of xylan in the cell wall and the nature of the molecular bonding between the polysaccharides are unknown. In dicots, the xylan backbone of β-(1,4)-linked xylosyl residues is decorated by occasional glucuronic acid, and approximately one-half of the xylosyl residues are O-acetylated at C-2 or C-3. We recently proposed that the even, periodic spacing of GlcA residues in the major domain of dicot xylan might allow the xylan backbone to fold as a twofold helical screw to facilitate alignment along, and stable interaction with, cellulose fibrils; however, such an interaction might be adversely impacted by random acetylation of the xylan backbone. Here, we investigated the arrangement of acetyl residues in Arabidopsis xylan using mass spectrometry and NMR. Alternate xylosyl residues along the backbone are acetylated. Using molecular dynamics simulation, we found that a twofold helical screw conformation of xylan is stable in interactions with both hydrophilic and hydrophobic cellulose faces. Tight docking of xylan on the hydrophilic faces is feasible only for xylan decorated on alternate residues and folded as a twofold helical screw. The findings suggest an explanation for the importance of acetylation for xylan-cellulose interactions, and also have implications for our understanding of cell wall molecular architecture and properties, and biological degradation by pathogens and fungi. They will also impact strategies to improve lignocellulose processing for biorefining and bioenergy.The work conducted by TT and NN was supported by a grant from the BBSRC: BB/G016240/1 BBSRC Sustainable Energy Centre Cell Wall Sugars Programme (BSBEC) to PD and DNB. The work of PD was supported by the European Community’s Seventh Framework Programme SUNLIBB (FP7/2007-2013) under the grant agreement #251132. The NMR facility infrastructure was supported by the BBSRC and the Wellcome Trust. TCFG thanks CNPq (Brazil) for a graduate fellowship (grant # 140978/2009-7). MSS thanks CEPROBIO (grant # 490022/2009- 0) and FAPESP for funding (grant #2013/08293-7).This is the accepted version of the following article: "Busse-Wicher, M; Gomes, T.C.F; Tryfona, T; Nikolovski, N; Stott, K; Grantham, N.J; Bolam, D.N; Skaf, M.S; Dupree, P. (2014) "The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a two-fold helical screw in the secondary plant cell wall of Arabidopsis thaliana." The Plant Journal. Accepted article [electronic] 10.1111/tpj.12575", which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/tpj.12575/abstrac

    Challenging assumptions of the enlargement literature : the impact of the EU on human and minority rights in Macedonia

    Get PDF
    This article argues that from the very start of the transition process in Macedonia, a fusion of concerns about security and democratisation locked local nationalist elites and international organisations intoa political dynamic that prioritised security over democratisation. This dynamic resulted in little progress in the implementation of human and minority rights until 2009, despite heavy EU involvement in Macedonia after the internal warfare of 2001. The effects of this informally institutionalised relationship have been overlooked by scholarship on EU enlargement towards Eastern Europe, which has made generalisations based on assumptions relevant to the democratisation of countries in Eastern Europe, but not the Western Balkans

    A foundation for reliable spatial proteomics data analysis.

    Get PDF
    Quantitative mass-spectrometry-based spatial proteomics involves elaborate, expensive, and time-consuming experimental procedures, and considerable effort is invested in the generation of such data. Multiple research groups have described a variety of approaches for establishing high-quality proteome-wide datasets. However, data analysis is as critical as data production for reliable and insightful biological interpretation, and no consistent and robust solutions have been offered to the community so far. Here, we introduce the requirements for rigorous spatial proteomics data analysis, as well as the statistical machine learning methodologies needed to address them, including supervised and semi-supervised machine learning, clustering, and novelty detection. We present freely available software solutions that implement innovative state-of-the-art analysis pipelines and illustrate the use of these tools through several case studies involving multiple organisms, experimental designs, mass spectrometry platforms, and quantitation techniques. We also propose sound analysis strategies for identifying dynamic changes in subcellular localization by comparing and contrasting data describing different biological conditions. We conclude by discussing future needs and developments in spatial proteomics data analysis..G., C.M.M., and M.F. were supported by the European Union 7th Framework Program (PRIME-XS Project, Grant No. 262067). L.M.B. was supported by a BBSRC Tools and Resources Development Fund (Award No. BB/K00137X/1). T.B. was supported by the Proteomics French Infrastructure (ProFI, ANR-10-INBS-08). A.C. was supported by BBSRC Grant No. BB/D526088/1. A.J.G. was supported by BBSRC Grant No. BB/E024777/ and a generous gift from King Abdullah University for Science and Technology, Saudi Arabia. D.J.N.H. was supported by a BBSRC CASE studentship (BB/I016147/1)

    GHTD-amide : A naturally occurring beta cell-derived peptide with hypoglycemic activity

    Get PDF
    in the early 1970s, a peptide fraction with insulin potentiating activity was purified from human urine but the identity and origins of the active constituent remained unknown. Here we identify the active component and characterize its origins. The active peptide was identified as an alpha amidated tetrapeptide with the sequence GHTD-amide. The peptide was synthesized and tested for stimulation of glycogen synthesis and insulin potentiation by insulin tolerance testing in insulin-deficient rats, which confirmed GHTD-amide as the active peptide. Tissue localization using a peptide-specific anti-serum and epifluorescent and confocal microscopy showed decoration of pancreatic islets but not other tissues. Confocal microscopy revealed co-localization with insulin and immunogold and electron microscopy showed localization to dense core secretory granules. Consistent with these observations GHTD-amide was found in media conditioned by MIN6 islet beta cells. Sequence database searching found no annotated protein in the human proteome encoding a potential precursor for GHTD-amide. We conclude that the insulin potentiating activity originally described in human urine is attributable to the tetrapeptide GHTD-amide. GHTD-amide is a novel peptide produced by pancreatic beta cells and no precursor protein is present in the annotated human proteome. Stimulation of glycogen synthesis and co-localization with insulin in beta cells suggest that GHTD-amide may play a role in glucose homeostasis by enhancing insulin action and glucose storage in tissues. (C) 2008 Elsevier Inc. All rights reserved

    A phase i study of daily treatment with a ceramide-dominant triple lipid mixture commencing in neonates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Defects in skin barrier function are associated with an increase risk of eczema and atopic sensitisation. Ceramide-dominant triple lipid mixture may improve and maintain the infant skin barrier function, and if shown to be safe and feasible, may therefore offer an effective approach to reduce the incidence of eczema and subsequent atopic sensitisation. We sort to assess the safety and compliance with daily application of a ceramide-dominant triple lipid formula (EpiCeram™) commencing in the neonatal period for the prevention of eczema.</p> <p>Methods</p> <p>Ten infants (0-4 weeks of age) with a family history of allergic disease were recruited into an open-label, phase one trial of daily application of EpiCeram™ for six weeks. The primary outcomes were rate of compliance and adverse events. Data on development of eczema, and physiological properties of the skin (transepidermal water loss, hydration, and surface pH) were also measured.</p> <p>Results</p> <p>Eighty percent (8/10) of mothers applied the study cream on 80% or more of days during the six week intervention period. Though a number of adverse events unrelated to study product were reported, there were no adverse skin reactions to the study cream.</p> <p>Conclusions</p> <p>These preliminary results support the safety and parental compliance with daily applications of a ceramide-dominant formula for the prevention of eczema, providing the necessary ground work for a randomised clinical trial to evaluate EpiCeram™ for the prevention of eczema.</p> <p>Trial registration</p> <p>The study was listed at the Australian/New Zealand Clinical Trial Registry (ANZCTR): reg. no. <a href="http://www.anzctr.org.au/ACTRN12609000727246.aspx">ACTRN12609000727246</a>.</p
    corecore