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Abstract

Quantitative mass spectrometry based spatial proteomics involves elaborate, expen-

sive and time consuming experimental procedures and considerable effort is invested

in the generation of such data. Multiple research groups have described a variety of

approaches to establish high quality proteome-wide datasets. However, data analysis

is as critical as data production for reliable and insightful biological interpretation, and

no consistent and robust solutions have been offered to the community so far. Here,

we introduce the requirements for rigorous spatial proteomics data analysis as well as

the statistical machine learning methodologies needed to address them, including su-

pervised and semi-supervised machine learning, clustering and novelty detection. We

present freely available software solutions that implement innovative state-of-the-art

analysis pipelines and illustrate these tools using several case studies, from multiple

organisms, experimental designs, mass spectrometry platforms and quantitation tech-

niques. We also propose sound analysis strategies to identify dynamic changes in

sub-cellular localisation by comparing and contrasting data describing different biolog-

ical conditions. We conclude by discussing future needs and developments in spatial

proteomics data analysis.

3



Spatial proteomics data analysis

1 Introduction

The knowledge of a protein’s sub-cellular localisation is of paramount biological impor-

tance and the reliable high-throughput assessment of localisation, and as a consequence

mis-localisation of proteins, is critical to our understanding of cellular biology. Indeed, a

protein must be localised to its intended sub-cellular compartment to enable interaction

with its binding partners and substrates and thus be functionally active. These sub-cellular

niches are many fold and include organelles, which are physically isolated from the rest of

the cell by lipid bilayers, as well as macro-molecular complexes of proteins and nucleic acids

such as the nucleolus, ribosomes or centrosomes. These various microenvironments represent

specialised compartments with unique and dedicated functions (1). It has been shown that

there is a significant correlation between disease classes and sub-cellular localisations (2) and

it is well established that loss or gain of function of proteins in may diseases can be attributed

to protein mis-localisations (3, 4, 5), further highlighting the importance for reliable, high-

throughput prediction of protein localisation to underpin cell biology research and to inform

the clinical and associated drug discovery communities. Organelle proteomics, also termed

more broadly spatial proteomics, is the systematic study of proteins and their assignments to

distinct spatial cellular sub-compartments and is a field rapidly growing in importance (6).

Current experimental designs and multivariate data analyses techniques permit a researcher

to collectively infer and track localisation of thousands of proteins and promises to elucidate

the coordinated changes in localisation at the whole proteome level.

Experimental organelle proteomics requires both sophisticated experimental designs in

order to obtain accurate datasets and elaborate methodologies to analyse and make sense

of the data (6). Various experimental designs have been proposed that merely focus on the

identification of proteins in single organelles through biochemical purification (pure fraction

cataloguing) to more complex methods that utilise quantitative mass spectrometry to elu-

cidate the broad sub-cellular diversity of cells (fractionation by centrifugation approaches).

Techniques that employ the former which focus on single or a limited number of organelles
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suffer from two major drawbacks: they may give rise to misleading and/or erroneous associ-

ations while not revealing a broader, biologically more meaningful picture, and suffer from

substantial contamination from incomplete purification/enrichment.

Techniques that employ the latter type of experimental designs to investigate the full

complement of sub-cellular niches were pioneered in 2006 by several groups. Dunkley et

al. (7) published the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) tech-

nique and Foster et al. (8) described the Protein Correlation Profiling (PCP) using label-free

quantitation. These methods enable measurement of steady state protein distributions to

provide a more realistic insight into their sub-cellular localisation, while overcoming the

requirement to purify organelles of interest and discriminate between genuine organelle res-

idents and contaminants. Briefly, these techniques start with the gentle lysis of the cells

and separate the intact and complete cell content using successive differential centrifugation

steps or gradient-based ultra-centrifugation, thus obtaining a continuous separation of the

complete cell content as a function of its density. Several fractions representing differential

sub-cellular enrichment are then collected and their respective protein complements are iden-

tified and quantified by high resolution mass spectrometry. The relative protein abundances

within the fractions represent unique organelle-specific distributions amongst partially en-

riched fractions. The resulting datasets are then formatted as a matrix, representing the

protein quantitation patterns along the fractions, which is then subsequently submitted to

further data analyses. To date, spatial proteomics relies extensively on reliable organelle

markers and supervised machine learning (ML) to infer proteome-wide localisation. Pattern

recognition techniques and classification algorithms such as support vector machines (9),

random forest (10) and many others (11) use marker proteins of known localisation to com-

pare and match the density-related profiles of proteins of unknown localisation. A matching

profile permits the assignment of the protein to the specific marker organelle.

Here, we present a set of contemporary methods adapted from the fields of statistics

and machine learning, to form a robust framework for spatial proteomics data analysis. We
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begin in section 2 with an introduction of the quantitative data structure and the notion

of organelle markers, and then proceed to present best practices for data processing, data

visualisation, quality control and protein localisation prediction. The ad hoc data structures

and methodological advances that we describe have been implemented and further devel-

oped using a set of flexible software packages for the R (12) programming language, namely

MSnbase (13) and pRoloc (11), available under permissive open source licenses from the Bio-

conductor (14) project. Methodological aspects, the understanding of the pipeline and its

critical parameters are explored through applications to empirical case studies. In section 3,

we proceed with a novel application of the computational methods presented, applied to the

analysis of protein dual-localisation and dynamic spatial proteomics, also termed compara-

tive organelle proteome profiling (15), where protein localisation is compared and contrasted

under different conditions.

2 Material and methods for spatial proteomics data

analysis

In this section, we present a detailed description of spatial proteomics data and a set of steps

leading to trustworthy results, as summarised in Fig. 1. Guidelines for the interpretation

and critical assessment through visualisation are described to guide new and experienced

organelle proteomics practitioners towards an in-depth understanding of their data.

2.1 Quantitative data

The data that is generated by the typical spatial proteomics experimental designs can be

represented in tabular format with features and fractions along rows and columns respectively

(as illustrated in Fig. 2, left). The features generally correspond to proteins or protein

groups, although peptides can also be used. A second critical set of information is required

for further data analysis, namely organelle markers. These are proteins that are defined as
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reliable organelle residents and can be used as reference points to identify new members of

that organelle. These marker proteins are generally selected by domain experts and play a

central role in the data analysis at many different levels, as highlighted in the next sections.

The nature of the experimental design will characterise the size and the nature of the

quantitative data in multiple ways. For example, the technical advantage of multiplexing

strategies such as isobaric labelling quantitation using iTRAQ (16) or TMT (17) labelling

systems, however directly reduces the resolution that can be measured along the separation

dimension, as one is limited by the number of tags that can be employed to quantify fractions.

This inherently limits the data cardinality and consequently reduces the discriminative power

of sub-cellular niches with similar profiles, as illustrated in Fig. 3. These protein profiles

represent well characterised mitochondrial and endoplasmic reticulum residents from two

different experiments, namely a TMT 6-plex (red) and a label-free experimental (black)

design, that have been fully quantified using 6 and 16 gradient fractions respectively. The

quantitation of more fractions using additional independent mass spectrometry acquisitions

must however be mitigated by the prevalence of incompletely characterised profiles (described

in section 2.3 and Fig. 4), due to missing values which are rife in label free datasets due to

the semi-stochastic nature of data dependent acquisition mass spectrometry approaches.

In the following sections, we will use published datasets from Dunkley et al. (7), and Tan

et al. (18) using augmented markers sets described in Breckels et al. (19), in order to illustrate

our findings. These datasets are also distributed as well documented and computer-friendly

data structure (13) in the pRolocdata (11) package and can be used as input to the software

packages used to run the computational experiments described below. Both datasets above

used the LOPIT technique to localise integral and associated membrane proteins.

In Dunkley et al. (7), two independent Arabidopsis thaliana callus membranes were pre-

pared and fractionated by using self-generating iodixanol density gradients. For each prepa-

ration, two iTRAQ 4-plex tags (16) were used to quantify seven different fractions, with

one fraction which was the same in both acquisitions. Firstly, fraction 1 (least dense) was

7



Spatial proteomics data analysis

labelled with reagent 114, fraction 4 with 115, fraction 7 with 116, and fractions 11 and

12 were pooled and labelled with 117. Then, fraction 2 was labelled with iTRAQ reagent

114, fraction 5 with 115, fraction 8 with 116, and fractions 11/12 with 117. The total

experiment yielded replicated measurements for 8 quantitation values along the gradient.

Labelled peptides were separated using strong cation exchange chromatography and anal-

ysed by LC-MS/MS on a QSTAR XL quadrupole-time-of-flight mass spectrometer (Applied

Biosystems). Tan et al. (18) collected Drosophila melanogaster embryos at 0 – 16 hours.

The material was homogenised and centrifuged to collect the supernatant, thus removing

cell debris and nuclei. Membrane fractionation was performed on an iodixanol gradient and

fractions were quantified using iTRAQ 4-plex isobaric tags (16) as follows: fractions 4/5,

114; fractions 12/13, 115; fraction 19, 116 and fraction 21, 117. Labelled peptides were then

separated using strong cation exchange chromatography and analysed by LC-MS/MS on a

QSTAR XL quadrupole-time-of-flight mass spectrometer (Applied Biosystems).

2.2 Data visualisation

The experimental data can be directly visualised by plotting the protein intensities, or gen-

erally their relative intensities, along the separation dimension. Although very useful, this

representation however is limited by the number of proteins or clusters of proteins that can

be represented on one figure. It is often essential to be able to visualise the full dataset on

one figure, possibly in summarised form, to assess the underlying structure of the data and

develop intuition of what can reasonably be achieved in light of the data’s properties. When

multivariate data is at hand, a popular technique to describe it is to perform dimensionality

reduction. This allows one to represent the data in a reduced set of dimensions, generally

2 or 3, instead of the original higher number corresponding to the individual fractions (the

columns of our data matrix represented in Fig. 2), while maintaining as much of the initial

information as possible. Principal component analysis (PCA) or nonlinear versions thereof,

are procedures that transform the original data into a set of orthogonal components that
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are ordered according to the amount of variability that they describe (Fig. 2, right). For

a well structured dataset, representing it as a projection along the two first components is

often an effective means to obtain a simple, yet representative visualisation of the data. The

first principal component, representing the most variability in the data, generally equates

to the main separation dimension applied to the cell content. In addition, if one considers

the amount of variability that is described along each of these first principal components,

one can assess how faithfully this two-dimensional representation of the data describes the

high dimensional data. Note that relatively minor variances within the data can also be

biologically relevant, and lower components may also be informative. While this representa-

tion remains a simplification, it is often possible to gain notable understanding of a complex

experiment from this single figure.

2.3 Data processing

In this section, we will discuss two essential aspects of data processing, namely imputation

of missing values and data normalisation. Although rarely exposed, it is important to ac-

knowledge the detrimental effect of missing values that are so prevalent when combining

independent acquisitions. None of the machine learning algorithms that have been applied

to organelle proteomics nor any of the contemporary machine learning methods can directly

deal with incomplete data; missing values are always explicitly or implicitly imputed before

submission to an algorithm. Missing data and the impact of imputation has not been thor-

oughly addressed in proteomics, let alone in spatial proteomics. Published LOPIT studies

(7, 18, 20) excluded proteins that presented missing values across replicated experiments.

PCP studies (8, 21) limited the computation of their χ2 metric to pairs of fractions (defined

as the squared deviation of the normalised profile for all peptides divided by the number of

data points), thus increasing the bias by lowering the number of data points. Other studies

have either explicitly (22) or implicitly (10) applied data imputation without necessarily

assessing the biases of the procedure. To illustrate the issues of imputation of missing data,
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we have assessed the impact of imputation using the specific goals of spatial proteomics,

i.e. the identification of sub-cellular protein clusters and the assignment of proteins. In

Fig. 4, we have used data from (7), which provides complete profiles for 16 fractions (some

being replicates) for nearly 700 proteins. After random assignment of missing values and

data imputation using nearest neighbour imputation (23), we estimated the effect of the

imputation method by tracking the shift of the imputed value with respect to the original

data points. As expected, we demonstrate an increasing impact of imputation on the data

with the number of missing values (Fig. 4, left). In addition, data imputation results in a

translation of data towards the centre of the figure, corresponding to less pronounced protein

profiles across the gradient (Fig. 4, right). This trend is representative of a loss of signal

resulting of imputation, which results in a reduction in the classification power and a bias

toward mis-classification to organelles that are characterised by such average profiles, such

as plasma membrane in the example shown.

Data normalisation is a topic that has been frequently explored in many areas of tran-

scriptomics and proteomics, albeit never in the light of organelle proteomics data. In all

subsequent analyses and visualisations we will use relative intensities across the fractiona-

tion scheme. When using absolute intensities for visualisation, the absolute component of

the signal will overwhelmingly influence the data transformations and eventually hide the

relative signal that is of primary interest. All published research tends to divid each inten-

sity by the maximum, or by the sum of intensities in each row of the data matrix. More

work on the benefit of the application of more sophisticated technique would be welcomed,

in particular when multiple experimental conditions acquired during different runs ought to

be compared (section 3.2). Finally, as illustrated in Fig. 5, the accuracy and precision of

the underlying quantitation methodology is an essential parameter for optimal cluster reso-

lution (24), and advances in mass spectrometry technologies and quantitation protocols play

a crucial role in the production of reliable data.
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2.4 Importance of organelle markers

An organelle marker is a protein known to be a resident of a specific sub-cellular niche in

the species and condition of interest. From a computational point of view, markers allow

the mapping of regions in the multidimensional data space to sub-cellular localisations (Fig.

2). The validity of markers and thus the reliable mapping of biological information to the

multivariate data is generally assured by expert curation of the proteins in the data set.

The Gene Ontology (GO) (25), and in particular the cellular compartment (CC) namespace

are an essential starting point for protein annotation and marker definition. Nevertheless,

automatic extraction of GO CC is only a first step and requires additional curation to

counter unreliable annotation based on data that is inaccurate or out of context for the

biological question under investigation. While proteins with genuine multiple localisations

are of particular interest (see below), one must be careful when assessing multiple GO CC

terms and distinguish proteins present in more than one subcellular niche (multi-localisation)

from changes in localisation under different conditions and incorrect annotation. Annotations

often represent a default/consensus state, while the information required to define a reliable

marker is specific to the system under study and the conditions of interest. In particular,

examples that do not match an annotated localisation for biologically relevant reasons will

be of remarkable interest. As such, there is an inevitable trade-off that must be considered

in using a very stringent high-confidence list or increasing the number of markers to better

characterise the multivariate data. Both aspects are important, as a minimum number of

markers is required for further data analysis, while mis-assignment can have a detrimental

effect on data analysis (see sections 2.6 and 2.7 on novelty detection and classification) and

a good balance can be obtained through careful quality assessment of the markers (next

section).

While marker definition is an important step, it is only the initial step of the analysis

workflow and is often time consuming. To facilitate the identification of markers, we have

curated proteins and mined publicly available datasets (7, 18, 20, 8, 19, 22, 26, 27) to provide
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marker sets for Arabidopsis thaliana (543 markers, 13 organelles), Drosophila melanogaster

(220 markers, 11 organelles), Saccharomyces cerevisiae (128 markers, 12 organelles), Gal-

lus gallus (102 markers, 5 organelles), mouse (648 markers, 21 organelles) and human (507

markers, 16 organelles) as part of our software infrastructure (11) (see details in supplemen-

tary file 1). These markers are now available in the pRoloc software and can be directly

added to quantitative datasets. They are provided as a starting point to generate reliable

sets of organelle markers but still need to be verified against any new data in the light of

the quantitative data and the study conditions.

2.5 Quality control

The quality of the data is often evaluated using a set of dedicated quality metrics and/or

through visualisation. Unsupervised machine learning methods (clustering) that represent

the quantitative data without additional external qualitative information is an efficient ap-

proach. Our first quality assessment aims at verifying whether the 1st principle behind

gradient-based organelle proteomics is met. Based on De Duve’s principle (28), we expect

that proteins that share the same sub-cellular localisation should co-localise accross a frac-

tion scheme, resulting in well defined structure in the data. We routinely apply the PCA

representation described above, without any additional information (symbols colouring de-

pending on external information like organelle residency), to inspect the data and assess

if structure can be observed. In a first instance, overlaying markers can be misleading by

conferring a false sense of data structure and should be avoided to inspect the data in a

complete unsupervised way; the first quality assessment ought to inform on existence of

clusters and structure of data prior to the mapping on biologically relevant niches. If no

structure is present, even if coherent marker groups can be identified, one should not expect

well defined classification boundaries that separate the sub-cellular clusters and thus inter-

pretation of data points located in the continuous cloud of points separating two clusters will

be challenging. A second assessment laid out by the experimental design can be explored by
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overlaying meta-data on the PCA plot, in particular organelle markers. These should match,

to some extent, the underlying data structure and explain some, not necessarily all, of the

observed protein clusters. An important question arises when marker proteins show substan-

tial deviation from the rest of the group, or more generally when a supposedly well-defined

cluster shows a widespread, undefined distribution. Consistent lack of structure/clusters in

the data is often indicative of poor separation and undermines all subsequent analysis and

interpretation. When individual outliers are detected, it is advised to verify the reliability of

the data (identification and quantitation accuracy) and annotation trustworthiness. When

any of these can be questioned, the annotation or possibly the protein altogether might be

removed from the data. If neither mis-identification nor unreliable quantitation can explain

the unexpected position of the marker, it will be the experimenters’ responsibility to decide

whether to un-label the protein, i.e not consider it as a reliable marker despite anticipated

localisation and reliable identification/quantitation, or keep it as is and instruct subsequent

algorithms of a possible extended mapping of the organelle to the data. It is however im-

portant to note that a marker’s localisation can not be (automatically) undone during the

data analysis (they represent rigidly imposed constraints that anchor the data space) while

an unlabelled protein can be assigned any of the identified localisations. A possible ap-

proach could be to un-label the unreliable marker and verify if it eventually gets assigned to

the expected localisation. The drawback of a systematic application of this approach is an

under-representation of the multidimensional data space: un-labelling markers corresponds

to a loss of information, and it is, in the end, up to the expert to define if the information

is reliable or not and on what grounds it should or shouldn’t be trusted in the light of the

data and its quality.

It is important to highlight that it is generally not possible, nor desirable, to identify

the complete sub-cellular diversity using markers at this stage. In general, reliable markers

can easily be identified for large and well studied niches. The nature of supervised machine

learning methods that have been used to date in organelle proteomics studies (see section
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2.7) constrain assignments of proteins to a set of marker classes. As such, there is a need for

discovery of new data-specific and relevant localisation clusters using a reduced set of highly

reliable markers and the underlying structure of our quantitative data.

2.6 Novelty detection

The assignment of proteins to organelles in spatial proteomics traditionally relies on super-

vised multivariate statistical and machine learning analysis wherein a set of highly curated

organelle markers (labelled training data), that belong to a finite set of organelles, is used to

map gradient profiles of unknown localisation to subcellular localisations with high accuracy.

The application of such methods, however, is often hindered by failure to extract organelle

markers that cover the whole subcellular diversity in the data, which leads to prediction

errors as protein profiles of unknown localisation can only be associated to organelles that

appear in the labelled training data. The extraction of all organelle and organelle-related

clusters is a difficult task owing to the limited number of marker proteins that exist in

databases and elsewhere, and the time-consuming nature of obtaining reliable markers. To

address these issues Breckels et al. (19) developed a novelty detection algorithm that is able

to identify sub-cellular groupings such as organelles and protein complexes in spatial pro-

teomics experiments. The algorithm, phenoDisco, uses a semi-supervised machine learning

schema that employs iterative cluster merging combined with Gaussian Mixture Modelling

and outlier detection to identify putative sub-cellular compartments. In a semi-supervised

scenario a classifier is learned in the presence of both labelled (i.e. organelle markers) and

unlabelled (i.e. proteins of unknown localisation) data. In order to apply Breckels’ algorithm

one requires an initial set of high quality input organelle markers that cover a minimum of

two classes each containing six or more marker protein profiles, and of course some unlabelled

data which we wish to mine for new phenotype organelle clusters.

The choice of labelled data (i.e. organelle markers), from which the applied machine

learning system will learn is extremely important as it can have significant impact on the
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success or failure of the learner. To illustrate this paradigm we investigated the impact

that marker choice has upon the application of the phenoDisco novelty detection algorithm

in mining a Drosophila melanogaster dataset which had been produced using the LOPIT

technology (18). We considered three sources of markers to use as input for the phenoDisco

algorithm: (i) a highly and manually curated set from experts in the field (20 ER, 6 Golgi, 14

mitochondrial and 15 plasma membrane markers from our curated marker sets, originally ob-

tained from (18)), (ii) unique Gene Ontology (GO) cellular compartment (CC) annotations

assigned a localisation from experimental evidence plus those assigned a unique localisation

as inferred from structural sequence or similarity in the GO database, and (iii) only unique

GO CC annotations assigned a localisation from experimental evidence in the GO database.

Reassuringly, it was found that in case (i) where a small set of manually curated markers

were used as input, six out of the seven previously unlabelled phenotype clusters that were

found in the phenoDisco experiments published in (19) were identified i.e. cluster of proteins

that represent two ribosomal subunits (40S and 60S), nucleus, proteasome, lysosome and the

cytoskeleton. An additional cluster of cytoplasmic proteins was also identified (phenotype

7, Fig. 6 A, right). Remarkably, we found that the use of organelle marker set (ii) has

a detrimental effect on the ability of the algorithm to identify any new organelle clusters

and we only are able to identify one new phenotype (Fig. 6 B, right). Examination of the

organelle markers in set (ii) showed lack of cluster resolution and an overlap between the

Golgi apparatus, plasma membrane and endoplasmic reticulum (ER) (Fig. 6 B, left). We

also found a mitochondrial outlier in the dataset which was completely separated from the

other mitochondrion markers and located towards to ER cluster. It was found that the

inclusion of this one clear outlier forced a negative constraint on the phenotype modelling

which resulted in a lack of new phenotypes detected. In attempt to improve marker list (ii)

we considered marker set (iii) which included unique GO CC annotations assigned from ex-

perimental evidence only. We identified 6, 0, 11 and 15 markers for the ER, Golgi apparatus,

mitochondrion and plasma membrane respectively. These presented a minimal overlap with
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the curated markers (only 3 for the mitochondrion and plasma membrane). We observed a

significant improvement in organelle cluster detection (Fig. 6 C, right). We did however see

more noise in the form of a number of smaller phenotypes that lay on the edge of the ER

cluster. Interestingly, we also noted that the phenoDisco algorithm detected the Golgi as an

independent phenotype (phenotype 10, Fig. 6 C, right). No unique Golgi CC markers were

retrieved from the GO that were assigned from experimental evidence that could be used as

input markers in set (ii) thus it is reassuring that we were still able to retrieve this organelle

using novelty detection methods. An important step in application of any novelty detection

algorithm is the careful examination of the protein content of any new clusters identified.

Curation and examination by experts in the field is an essential step in the discovery analysis

pipeline. Using such approaches a researcher is able to mine MS datasets at a deeper level

and bring to light interesting sub-cellular compartments for more comprehensive validation

for use in a supervised machine learning analysis for robust protein localisation assignment.

2.7 Classification

In machine learning the task of classification falls under the broad area of supervised learning.

In supervised learning the aim is to train a classifier to learn a mapping between a set

of observed instances and a set of associated external attributes that are being predicted

(usually known as the class label or predictor). This set of instances along with their known

class labels is typically called the training data. Once a classifier has been learned from the

training data, the aim is to use this classifier to predict the class labels on data with unknown

attributes. All methods to date that have been applied to predict protein localisation have

used supervised machine learning.

In terms of protein localisation prediction using data from MS-based organelle proteomics

experiments, each training data example consists of a pair of inputs: the actual data, gen-

erally represented as a vector of numbers (such as the associated normalised ion intensities

along a set of fractions for a given protein) and a class label, representing the membership
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to exactly one of multiple possible organelle classes (this is usually referred to as multiclass

problem). When there are only two possible classes this is referred to as binary classification.

Before one can generate a model on the training data and classify unknown residents one

has to take care of properly setting the model parameters. Wrongly set parameters can have

adverse effects on the classification performance and success of the learner to the same degree

as using inappropriate training examples. An important factor to consider in ones choice of

training examples i.e. organelle markers, is how well they represent the multivariate data

space i.e. the distribution of proteins over which the system performance will be measured.

In general, it has been found that learning is most reliable when the training data follow a

distribution similar to that of the examples we wish to classify.

Parameter optimisation can be conducted in a number of ways. One of the most common

ways to optimise ones parameters is to use the convention of a training set (to model) and a

testing set (to predict) which are subsets extracted from the labelled training data. Observed

and expected classification results can be compared, and then used to assess how well a given

model works by getting an estimate of the classifiers ability to achieve a good generalisation

i.e. that is given an unknown example predict its class label with high accuracy. A commonly

used measure of classifier performance is the macro F1 score, F1 = 2 precision×recall
precision+recall

, which is

the harmonic mean of precision = tp
tp+fp

and recall = tp
tp+fn

, such that tp = true positives and

tn = true negatives. This procedure is usually used for a range of possible model parameter

values (this is called a grid search), and the best performing set of parameters is then used

to construct a model on all markers and predict un-labelled proteins. Estimation of the

algorithmic performance can be assessed in many ways, such as via cross-validation. In the

pRoloc package, algorithmic performance is estimated using stratified 20/80 partitioning,

in conjunction with five-fold cross-validation in order to optimise the free parameters via a

grid search. This procedure is usually repeated 100 times and then the best parameter(s)

are selected upon investigation of associated macro F1 scores. A high macro F1 score

indicates that the marker proteins in the test dataset are consistently correctly assigned by
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the algorithm. Often more than one parameter or set of parameters gives rise to the best

generalisation accuracy. As such it is always important to investigate the model parameters

and critically assess the best choice. The best choice may not be as simple as the parameter

set that gives rise to the highest macro F1 score and one must be careful to avoid overfitting

and to choose parameters wisely.

Once the best parameters have been selected they can then be used to build a classifier

from the training data of organelle markers. The classifier will return a classification result

for all unlabelled instances in the dataset corresponding to their most likely sub-cellular

compartment. In addition, it is possible to extract classification accuracy scores that can

inform on the reliability of the assignment. Many supervised machine learning algorithms

have been developed, some of the most popular being the support vector machine (SVM),

K -nearest neighbour (k -NN), random forest, neural networks and naive Bayes among oth-

ers. These methods, along with newer state-of-the-art algorithms such as the Perturbo (29)

classification algorithm, are available in the pRoloc package. With the vast number of clas-

sification methods available it is often a daunting task to choose which method is best suited

to the classification task, however it is not often the choice of algorithm that underpins ro-

bust results. In fact, it is widely accepted that it is not algorithm choice that matters but

the way in which it is applied and the availability of good training data.

As an example of an application of protein localisation prediction using supervised ma-

chine learning, we took the first replicate from Tan et al. (18) and applied a weighted SVM

classifier for protein classification. The labelled training data (Fig. 7, left) was constructed

from manually curated markers from Tan et al. (18) which were further refined using Breckels

et al. (19) phenotype discovery algorithm. Here, using the pRoloc package we employed a

weighted SVM with a Gaussian kernel to learn a non-linear decision function on the training

data to map proteins of unknown localisation to one of the known organelle classes. Class

specific weights were used when creating the SVM model which were set to be inversely

proportional to the class frequencies to account for class imbalance. On the training data
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the two free SVM parameters, cost and sigma, were optimised over 100 rounds of stratified

5-fold cross-validation via a grid search and the best pair of parameters for the classifier

were chosen from evaluation of the macro F1 scores (Fig. 7, middle). The optimised SVM

classifier was then used to predict protein localisation on the unlabelled data (Fig. 7, right).

The size of the points in 7 (right) reflects the classification probabilities.

3 Multiple conditions and multi-localisation

The previous sections demonstrate a robust protocol to mine and understand the data, verify

its annotation, explore it to identify new clusters and classify proteins to sub-cellular niches,

relying on state-of-the art algorithms and proven methodologies. Additional complexity

arises when multiple conditions need to be considered to elucidate the dynamic nature of

protein localisation or multi-localisation of proteins to multiple sub-cellular compartments.

To illustrate key concepts and pitfalls of such analyses, we generated a set of controlled local-

isation changes using the experiments from Dunkley et al. (7) and relevant curated marker

proteins. We modelled changes in localisations and moved proteins from one organelle to

another, by updating their observed quantitative data along the gradient by new meaningful

values inferred from the same dataset.

3.1 Multi-localisation

The protein databases provide multiple localisation annotation per protein in about 60%

of human UniProt entries (see supplementary file 2). While a certain number of these

annotations are likely to be erroneous or represent specialisation of identical compartments

and do not necessarily imply that proteins multi-localise under identical conditions, dual-

localisation is an important aspect that needs to be addressed. We used the complete data

from Dunkley et al. (7) to create variable mixture of protein relative abundances along

the gradient to simulate dual-localisation. Fig. 8 (left) shows such an example where all
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fractions of an ER (blue) and Plastid (orange) marker protein profiles have been combined

to generate a set of ER/Plastid mixtures ranging from only ER to only Plastid through

90% ER/10% Plastid, 80% ER/20% Plastid, . . . 10% ER/90% Plastid intermediates. The

resulting mixture profiles are represented as points on the global PCA plot (Fig. 8, right),

and are coloured according to their classification using a support vector machine classifier

and the procedure described in section 2.7. As can be seen, some of the mixtures travel over

the plasma membrane cluster, localised between the end points on the PCA plot, and are

classified accordingly. The size of the points along the mixture gradient are proportional to

the classification probabilities. ER/Plastid mixtures that closely match plasma membrane

profiles are classified as plasma membrane residents. A plasma membrane marker protein

is represented in yellow on the mixture profiles (Fig. 8, left) to illustrate the relevance of

the classification result. Various mixtures for other dual-localisation scenarios have been

modelled and lead to identical scenarios, where intermediate mixtures match intermediate

organelle profiles (see supplementary file 3).

Despite the PCA plot being a two-dimensional projection of the data, the results of the

non-linear classifier are accurately described for this well-resolved data. These simulations

indicate that proportional mixtures of two well defined organelle members that mimic dual-

localisation of proteins at various proportions are easily confounded with other sub-cellular

compartments. From this result we deduce that reliable inference of dual- and more generally

multi-localisation requires additional biological information, and can not only rely on unique

proteins. In particular, we suggest that known dual-localised examples that form coherent

clusters are desired to reliably identify new examples; single evidence proteins can hardly be

distinguished from quantitation noise or from membership to intermediate compartments.

3.2 Trans-localisation

To simulate multiple conditions, we took advantage of the availability of biological replicates

in Dunkley et al. (7). The two membrane preparations exhibit technical variability that
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represent a considerable challenge when investigating genuine changes in localisation, thus

making this example a faithful representation of real use cases, while allowing us to set and

control protein trans-localisations. We chose seven marker proteins (see supplementary file

3 for details) and imposed changes to different destination organelles. The original relative

quantitation values have been replaced by the mean fraction values of all destination marker

proteins. The trans-localisations are highlighted by arrows on Fig. 9. Below, we demonstrate

important aspects influencing the analysis of dynamic spatial proteomics data, namely data

normalisation, the identification of trans-localisation and, in section 3.3 concerted trans-

localisations.

Data normalisation

The two replicates display biological as well as substantial technical variability, as illustrated

on Fig. 9, left panel. The first and second replicates are represented by circles and diamonds

respectively, and the corresponding pairs of proteins are linked by dotted segments. The

colours represent all marker proteins for the 9 sub-cellular niches identified for this dataset.

While the mass spectrometry processing is becoming more reliable and reproducible, the

density separation gradient is a sensitive operation that is executed manually. While Trotter

et al. (9) have demonstrated that combining different gradients that separate different sets

of organelles from replicated measures from a single condition, achieves a better separation

than each gradient taken separately, it is essential to reduce intra-condition variability to

highlight differences between conditions. We have transformed the data using the variance

stabilisation normalisation (30), a technique that has already been successfully applied to

proteomics data (31). The result is represented on the right panel of Fig. 9 and shows a

substantial improved overlap of replicate 1 (circles) and 2 (diamonds).
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Identifying trans-localisations

We combined two complementary procedures to search for the seven trans-localised proteins.

We have employed the machine learning tools described in section 2 and performed a clas-

sification analysis on two replicates with the trans-localised proteins. As shown in table 1,

the two replicates mostly agree (values along the diagonal). There are however 107 other

discrepancies, including the seven anticipated trans-localised proteins, that are assigned the

expected localisations in each replicate (see the supplementary file 3).

We next devised a second selection criterion, based on the rational that trans-localising

proteins should be characterised by different quantitation profiles along the gradient. For

each pairs of proteins in the replicates, we summed the squared differences of the respective

fraction log2 ratios: Σn
i=1(log2

fracirep1
fracirep2

)2. The distribution of these distances is shown on Fig.

10, left panel. The distances corresponding to the seven trans-localised proteins are shown

in blue. Three of these proteins are clear outliers (above red dashed line, corresponding

to the largest non-trans-localised protein). If we consider the smallest trans-localised dis-

tance (black dashed line), nine non-trans-localised proteins display larger distances. These

nine pairs of proteins are highlighted in red on the PCA plot on Fig. 10; 5 pairs show

differently coloured starting circles (replicate 1) and ending diamonds (replicate with trans-

localisations), representing false positive (see details in supplementary file 3).

While all seven trans-localisation have been classified as expected and displayed consid-

erably higher sums of squared log2 ratios than most other proteins, a notable proportion

of false positives are present among the top hits. Only proteins exhibiting extreme trans-

localisation distances between sub-cellular locations that span the full width of the separation

capabilities of the design are likely to be reliably identified. Such mixed results are likely to

be generalisable due to high variability during cell content separation.

22



Spatial proteomics data analysis

3.3 Concerted trans-localisations

While it is difficult to identify genuine single trans-localising proteins, a biologically rele-

vant scenario could imply a set of proteins exhibiting the same event of trans-localisation,

termed concerted trans-localisation. We have modelled such a case by trans-locating 15

mitochondrial proteins (purple) to the plastid cluster (orange) (Fig. 11, left). The new

positions have been generated by adding small amounts of normal noise to 15 plastidial res-

idents. While the changes in localisation are correctly classified (see supplementary file 3),

the trans-localisation distances are not large enough to be differentiated from the technical

and biological variability between replicates, as anticipated from our previous results. How-

ever, we predicted that it should be possible to identify the synchronised displacement of

the candidates. To do so, we counted the number of trans-localisations between all possible

pairs or organelles (Fig. 11, top heatmap). We then normalised these counts be subtract-

ing reciprocal pairs to balance gain and loss of residents (Fig. 11, bottom heatmap). For

example, 6 changes are documented from ER membrane to the ribosome and 5 from the

ribosome to the ER membrane, resulting in a net change of 1 in favour of the ER membrane.

Indeed, gains and losses should compensate each other in case of random fluctuations while

consistent movements produce a systematic decrease and increase of recorded events at the

origin and destination of the concerted trans-localisations. The normalised number of trans-

localisations reported our expected count of Mitochondrion to Plastid movements. We also

observe that random net displacements up to 8 can be observed and the appearance of con-

certed trans-localisation will only be apparent when enough proteins display synchronised

behaviour.

4 Discussion

We have described a typical pipeline of organelle proteomics data and clarified some central

machine learning concepts applied to such data. While it is essential to understand the prin-
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ciples, requirements, weaknesses and strengths underpinning such analyses before confidently

interpreting the results, the availability of the right tools is essential. The recent review by

Drissi et al. (32) presents an overview of proteomics methods for sub-cellular proteome analy-

sis. In a section about bioinformatics tools for the analysis of organelle proteomics data, they

do not mention the existence of any software that will allow the analysis of such data and

only refer to the importance of existing protein sub-cellular annotation and the role of GO.

It is interesting to look back of past studies and note which methods have been used and also

whether, with hindsight improvements could have been made in application of approaches

and reporting of data. This is a useful exercise to undertake, especially in such an emerging

field as spatial proteomics data analysis. The first applications of large-scale organelle pro-

teomics data analysis were PCP (21, 8), that calculated the χ2 metric using in-house tools

and the LOPIT (7, 20, 18) that applied Partial Least Square Discriminant Analysis using

the commercial SIMCA software (Umetrics, Umea, Sweden). Trotter et al. (9) implemented

custom R code (12) and used the SVM algorithm from the kernlab package (33) but no code

for others to repeat his state-of-the-art procedure is provided. Others have applied other

contemporary machine learning algorithms, including random forests (10), Naive Bayes (22)

and neutral networks (34) but did not provide means to apply their analyses to new data.

While proteomics data is commonly being disseminated through appropriate repositories, it

is not commonplace to provide reproducibility in terms of software and data analysis despite

their recognised importance (35).

Here we have attempted to redress access to code and the ability to reproduce data

analysis by performing the analysis and creating illustrations using the R language and

a set of well documented Bioconductor (14) software add-ons specifically developed for

quantitative proteomics data. The MSnbase package (http://www.bioconductor.org/

packages/release/bioc/html/MSnbase.html) (13) allows the consistent management and

processing of the quantitative data and its associated metadata while the pRoloc package

(http://www.bioconductor.org/packages/release/bioc/html/pRoloc.html) (11) pro-
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vides a visualisation and statistical machine learning (including all the algorithms mentioned

above as well as novel ones (29)) framework to analyse and interpret spatial proteomics data.

The software allows the implementation of a robust and reproducible analysis pipeline and

is flexible to accommodate various designs and foster the development of innovative analysis

strategies. The software provides extensive documentation and tutorials for a fully repro-

ducible organelle proteomics framework. Finally, pRoloc benefits from the Bioconductor

infrastructure and its full integration to various online resources, including, among many

others, the Gene Ontology (the GO.db package (36)), the UniProt database (the biomaRt

package (37)) and human proteome atlas (38, 39) (the hpar package (40)).

In this study we have also sought to develop analysis pipelines that will be useful to

dual/multi- and trans-localisation study designs. Such approaches build on robust single

condition classification accuracy that relies on good resolution of the sub-cellular space to

reduce inter-organelle variability (well defined clusters) and enable reliable organelle assign-

ments. Trans-localisation studies over additional conditions suffer from additional levels of

variability that can partially be addressed in multiple ways. First, the use of biological

knowledge, including dual-localised or concerted dynamic protein markers can be used to

direct the supervised components of the analyses while providing a reliable starting point to

uncover genuine signal from noise. Second, reduction of technical variability through ade-

quate normalisation (section 3.2) or multiplexed designs will be of paramount importance.

The balance between the number of fractions and the advantage of multiplexing strategies

to reduce inter-run variability and missing data discussed in section 2.1 becomes even more

critical in multi-condition designs, when relying on 3 (TMT 6-plex) or 4 (iTRAQ 8-plex)

fractions per condition makes it challenging to obtain any well resolved clusters in the data.

The advent of higher multiplexing solutions, like TMT 10-plex, promises to optimise dy-

namic designs by combining sufficient resolution and reducing technical variability. Finally,

replication can confer more accurate classification in single conditions (9) and will provide

an assessment of uncertainty to support the identification of multi- and trans-localisation
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events.

5 Conclusion

The path to reliable data analysis results is never written in stone, in particular for complex

experimental designs and multivariate data. There are however certain requirements that

are always applicable. Visualisation of the complete dataset is essential to describe its major

features; in the case of a spatial proteomics experiment, we have highlighted multiple appli-

cations of a dimensionality reduction technique like PCA. This is of course a simplification

of the complete data, but can often provide a first inkling on the extent of separation and

success of classification. It is also important to set basic assumptions about the data, assess

the organelle markers in the light of the data structure, describe how it is processed and

assess the effects of the treatments it undergoes. Finally, to what extent is the result of

the data classification algorithm reliable must be questioned. Trust in the results will be

gained by proper usage of algorithms, quality control of the data and verification that basic

assumptions on the data, such as appropriate separation of the data, reliable usage of mark-

ers, consideration of biologically relevant diversity, and the algorithms in terms of adequate

utilisation and parameter selection, are met. The methodology that we have demonstrated

brings us a step closer to meeting the requirements of a trustworthy spatial proteomics data

analysis.
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Fig. 2: Left: Representation of a fully described spatial proteomics dataset containing quan-
titative data for n proteins along m fractions. Each protein is described by additional meta-
data, in particular definition of known sub-cellular localisation for well known residents.
Fractions are also decorated with specific metadata. Right: Summarisation of the quanti-
tative data and annotation of the ’markers’ protein metadata using a principal component
analysis figure.
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Fig. 4: Assessment of data imputation on cluster resolution and protein organelle assignment.
On the left, we illustrate the positive relation between number of imputed values and the
displacement of the points before (original values) and after imputation. On the PCA plot
on the right, the number of missing values that were imputed are reported in the protein
points and the effect on the change in position of the proteins on the PCA plot is highlighed
by arrows that show a clear trend toward the origin of the plot.
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Fig. 5: Effect of noise on sub-cellular cluster resolution. Comparison of original Dunkley
et al. (7) data (left) and data to which additional quantitation noise as been added (right).
The quantitation noise has been simulated by adding a normal error term (using the mean
of the data and 1

2
standard deviation as parameters) to the quantitation data. While the

clusters are still visible and well separated in the noisy data, the original data features much
more tight and resolved data with better separation boundaries between groups of interest.
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Fig. 6: The effect of different organelle marker sets (left) on the application of the nov-
elty discovery algorithm, phenoDisco, (right) in mining a Drosophila melanogaster dataset
produced using the LOPIT technology (18). (A) A manually curated set from experts in
the field. (B) Unique GO CC annotations from experimental evidence or computational
predictions. (C) Unique GO CC annotations from experimental evidence.
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Fig. 7: Application of the support vector machine classifier (SVM) to the Tan et al. (18)
data. Left: Augmented dataset after novelty detection. Middle: Grid search for the SVM
parameters cost and sigma, highlighting optimal pairs of parameters. Right: Application of
the SVM classifier. The size of the points reflects the classification probabilities.
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Fig. 8: Applications of the SVM classification algorithm to identify dual-localisation patterns.
Left: ER (blue)/Plastid (orange) relative quantitation mixture. A plasma membrane marker
protein is shown in yellow. Right: position of the respective ER/Plastid mixtures on the
PCA plot and their respective colour-coded classifications.
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Fig. 9: Application of the variance stabilisation normalisation of two replicates (circles and
diamonds) of our test data. The solid red arrows indicate the trans-localised proteins. On
the left, original data, showing substantial differences between replicate 1 (circles) and 2
(diamonds). The colours represent all markers for the 9 sub-cellular localisations. After ap-
plication of the normalisation procedure, on the right, we obtain considerably better overlap
between the replicates.
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value and the smallest genuine trans-localised protein. Right: PCA plot illustrating effects of
technical variability and trans-localisations. Non-trans-localised pairs with a sum of squared
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are represented by thick arrows.
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Fig. 11: A scenario of concerted trans-localisation involving 15 proteins moving from the
mitochondrial organelle (purple) to the plastid cluster (orange). Random trans-localisations
are connected by red dotted segments. The heatmaps on the right show the absolute (top)
and normalised (bottom) number of observed trans-localisation effects. Concerted trans-
localisation effects are characterised by high net gains and reciprocal losses of displacements.
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ER lum ER mb GO MT PT PM Ribo TGN VA

ER lum 16 6 0 0 0 0 1 0 1
ER mb 0 175 3 0 0 9 5 1 0

GO 0 1 81 1 0 6 0 10 0
MT 0 0 0 84 9 2 0 0 0
PT 0 1 1 4 47 0 0 0 0
PM 0 4 5 4 0 98 5 1 2

Ribo 0 4 0 0 0 11 38 0 1
TGN 0 0 7 0 0 0 0 14 0

VA 1 0 0 1 0 0 0 0 29

Table 1: Comparison of the classification results of two replicated experiments including
simulated trans-localisations from Dunkley et al. (7). Values along the diagonal correspond to
identical outcomes while values in the upper of lower parts of the contingency table represent
differences, seven of which are expected based on the imposed sub-cellular changes.
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