28 research outputs found

    Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia

    Get PDF
    Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis

    Imprinted Gene Expression and Function of the Dopa Decarboxylase Gene in the Developing Heart

    Get PDF
    Dopa decarboxylase (DDC) synthesizes serotonin in the developing mouse heart where it is encoded by Ddc_exon1a, a tissue-specific paternally expressed imprinted gene. Ddc_exon1a shares an imprinting control region (ICR) with the imprinted, maternally expressed (outside of the central nervous system) Grb10 gene on mouse chromosome 11, but little else is known about the tissue-specific imprinted expression of Ddc_exon1a. Fluorescent immunostaining localizes DDC to the developing myocardium in the pre-natal mouse heart, in a region susceptible to abnormal development and implicated in congenital heart defects in human. Ddc_exon1a and Grb10 are not co-expressed in heart nor in brain where Grb10 is also paternally expressed, despite sharing an ICR, indicating they are mechanistically linked by their shared ICR but not by Grb10 gene expression. Evidence from a Ddc_exon1a gene knockout mouse model suggests that it mediates the growth of the developing myocardium and a thinning of the myocardium is observed in a small number of mutant mice examined, with changes in gene expression detected by microarray analysis. Comparative studies in the human developing heart reveal a paternal expression bias with polymorphic imprinting patterns between individual human hearts at DDC_EXON1a, a finding consistent with other imprinted genes in human

    Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors.

    Get PDF
    Lympho-myeloid restricted early thymic progenitors (ETPs) are postulated to be the cell of origin for ETP leukemias, a therapy-resistant leukemia associated with frequent co-occurrence of EZH2 and RUNX1 inactivating mutations, and constitutively activating signaling pathway mutations. In a mouse model, we demonstrate that Ezh2 and Runx1 inactivation targeted to early lymphoid progenitors causes a marked expansion of pre-leukemic ETPs, showing transcriptional signatures characteristic of ETP leukemia. Addition of a RAS-signaling pathway mutation (Flt3-ITD) results in an aggressive leukemia co-expressing myeloid and lymphoid genes, which can be established and propagated in vivo by the expanded ETPs. Both mouse and human ETP leukemias show sensitivity to BET inhibition in vitro and in vivo, which reverses aberrant gene expression induced by Ezh2 inactivation

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Epigenetics in Gene Expression and Development

    Get PDF

    Sleep and sleeplessness in Byzantium

    No full text
    This thesis sets out that 'sleep-deprivation' cannot be used as synonym for 'vigil' and 'sleep abstinence', Sleep-deprivation, when partial, needs to be defined in relation to a sleep optimum against which is measured the amount of sleep the individual gets per 24 hours. Considering the varying lengths of vigil and the fact that the Byzantines slept habitually throughout the night, it is obvious that while vigil and sleep-abstinence might refer to any amount of sleep-loss. sleep deprivation refers only to the loss of necessary sleep. The thesis argues for the need to combine sleep medicine with textual research; the flrst provides a definition of the sleep optimum; the second the amount of sleep the Byzantines might have got. Then, it is possible to discern between practices which are different as to their length, fortitude, motives, aims and consequences. Following the definitions, a chapter on the mechanics of sleep establishes from the evidence the sleep optimum to be 7 hours per 24-hour period. The research then focuses on the practice of sleeploss in the Bible and Hellenism. I argue that both cultures practised sleep-abstinence; however their motives were different as they had opposing views on sleep. The reasons for sleep-abstinence among the Byzantines are presented next, and an explanation is given on how those might have led to sleep-deprivation. I recognise that the Byzantines were heirs to both the Biblical and Hellenic cultures, but I insist that their practice of both sleep-abstinence and sleep-deprivation was firmly rooted in the Bible. The monastic vigil is presented after this, and I determine how fervently sleep-loss was practised by establishing its difficulty, evaluating the methods used to achieve it, and scrutinising the accounts of sleepless saints. Sleep-deprivation appears more common among solitaries and lavriotes rather than coenobires. In this section, I also investigate possible pathological causes of sleep-deprivation. The vigil of the laity is dealt with in the last two chapters. The first examines vigils at home. It rejects the Ekirch-Wehr theory, according to which in pre-industrial times people had a nantral break in their sleep at midnight The theory purports that the church vigil simply colonised the period of wakefulness, so there was no sleep-abstinence. It is proven in this thesis that the breaking of sleep was artificial, an implementation of the Christian command to watch and pray at night. The last chapter presents vigils at church. While the Byzantines did not distinguish between private and public forms of piety, they preferred public vigils for reasons unconnected with theology. It was mostly during the church vigils that the Byzantine laity practised sleep-abstinence and occasionally either slumbered or became sleep-deprived. The thesis concludes that the Byzantines, inspired by the Bible, practised both sleep-deprivation and sleep-abstinence. Sleep-deprivation was sometimes consciously pursued, at other times it was the result of environmental, physical, or even pathological factors. Sleep-deprivation was a sign of religious fervour par excellence, but this did not diminish the value of sleep-abstinence, which for the Byzantines was a time of thanksgiving and repentance, of approaching God, fighting demons, and avoiding retribution.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore