122 research outputs found

    AKAP9 (A kinase (PRKA) anchor protein (yotiao) 9)

    Get PDF
    Review on AKAP9 (A kinase (PRKA) anchor protein (yotiao) 9), with data on DNA, on the protein encoded, and where the gene is implicated

    Thyroid: Papillary Carcinoma with inv(7)(q21q34)

    Get PDF
    Review on Thyroid: Papillary Carcinoma with inv(7)(q21q34), with data on clinics, and the genes involved

    RET Rearrangements in Lung Adenocarcinoma and Radiation

    Get PDF
    Background:RET rearrangement, a hallmark of radiation-induced thyroid cancer, has been reported to occur in 1% of lung adenocarcinoma patients. Patients with this rearrangement tend to be younger and never smokers, raising a possibility of other causes, such as radiation. We hypothesized that RET chromosomal rearrangement may represent a genetic mechanism of radiation-induced lung cancer.Methods:Two hundred forty-five consecutive primary lung adenocarcinomas without history of radiation and 38 lung adenocarcinoma patients with a history of therapeutic radiation for breast carcinoma or mediastinal Hodkgin lymphoma were tested for RET rearrangement by fluorescence in situ hybridization. Human lung adenocarcinoma cells (201T) were subjected to Îł radiation and tested for RET gene fusions by reverse transcriptase-polymerase chain reaction and Southern blot hybridization.Results:We identified one case with RET rearrangement in the group without history of radiation (1 of 240; 0.4%) and two cases in the group with history of radiation (2 of 37; 5.4%; P=0.0436). Both these patients were women, who were former smokers with a history of breast carcinoma treated with surgery and radiation. Furthermore, we found that RET fusions could be directly induced in 201T human lung cells by exposure to 1 Gy of Îł radiation. All fusions identified were between RET and KIF5B genes, and no RET fusions to CCDC6 or NCOA4 genes, characteristic for thyroid cancer, were identified in the irradiated lung cells.Conclusion:RET fusions may represent a genetic mechanism of radiation-induced lung adenocarcinoma

    Regulation of p27Kip1 Protein Levels Contributes to Mitogenic Effects of the RET/PTC Kinase in Thyroid Carcinoma Cells

    Get PDF
    Abstract We show that treatment of a panel of thyroid carcinoma cell lines naturally harboring the RET/PTC1 oncogene, with the RET kinase inhibitors PP1 and ZD6474, results in reversible G1 arrest. This is accompanied by interruption of Shc and mitogen-activated protein kinase (MAPK) phosphorylation, reduced levels of G1 cyclins, and increased levels of the cyclin-dependent kinase inhibitor p27Kip1 because of a reduced protein turnover. MAP/extracellular signal-regulated kinase 1/2 inhibition by U0126 caused G1 cyclins down-regulation and p27Kip1 up-regulation as well. Forced expression of RET/PTC in normal thyroid follicular cells caused a MAPK- and proteasome-dependent down-regulation of p27Kip1. Reduction of p27Kip1 protein levels by antisense oligonucleotides abrogated the G1 arrest induced by RET/PTC blockade. Therefore, in thyroid cancer, RET/PTC-mediated MAPK activation contributes to p27Kip1 deregulation. This pathway is implicated in cell cycle progression and in response to small molecule kinase inhibitors

    Switching between different vortex states in 2-dimensional easy-plane magnets due to an ac magnetic field

    Full text link
    Using a discrete model of 2-dimensional easy-plane classical ferromagnets, we propose that a rotating magnetic field in the easy plane can switch a vortex from one polarization to the opposite one if the amplitude exceeds a threshold value, but the backward process does not occur. Such switches are indeed observed in computer simulations.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    DNA topoisomerases participate in fragility of the oncogene RET

    Get PDF
    Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APHinduced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication

    The Genomic and Evolutionary Landscapes of Anaplastic Thyroid Carcinoma

    Get PDF
    Anaplastic thyroid carcinoma is arguably the most lethal human malignancy. It often co-occurs with differentiated thyroid cancers, yet the molecular origins of its aggressivity are unknown. We sequenced tumor DNA from 329 regions of thyroid cancer, including 213 from patients with primary anaplastic thyroid carcinomas. We also whole genome sequenced 9 patients using multi-region sequencing of both differentiated and anaplastic thyroid cancer components. Using these data, we demonstrate thatanaplastic thyroid carcinomas have a higher burden of mutations than other thyroid cancers, with distinct mutational signatures and molecular subtypes. Further, different cancer driver genes are mutated in anaplastic and differentiated thyroid carcinomas, even those arising in a single patient. Finally, we unambiguously demonstrate that anaplastic thyroid carcinomas share a genomic origin with co-occurring differentiated carcinomas and emerge from a common malignant field through acquisition of characteristic clonal driver mutations

    2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer

    Get PDF
    Thyroid nodules are a common clinical problem, and differentiated thyroid cancer is becoming increasingly prevalent. Since the American Thyroid Association's (ATA's) guidelines for the management of these disorders were revised in 2009, significant scientific advances have occurred in the field. The aim of these guidelines is to inform clinicians, patients, researchers, and health policy makers on published evidence relating to the diagnosis and management of thyroid nodules and differentiated thyroid cancer
    • …
    corecore