119 research outputs found

    Identification of a novel resistance (E40F) and compensatory (K43E) substitution in HIV-1 reverse transcriptase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 nucleoside reverse transcriptase inhibitors (NRTIs) have been used in the clinic for over twenty years. Interestingly, the complete resistance pattern to this class has not been fully elucidated. Novel mutations in RT appearing during treatment failure are still being identified. To unravel the role of two of these newly identified changes, E40F and K43E, we investigated their effect on viral drug susceptibility and replicative capacity.</p> <p>Results</p> <p>A large database (Quest Diagnostics database) was analysed to determine the associations of the E40F and K43E changes with known resistance mutations. Both amino acid changes are strongly associated with the well known NRTI-resistance mutations M41L, L210W and T215Y. In addition, a strong positive association between these changes themselves was observed. A panel of recombinant viruses was generated by site-directed mutagenesis and phenotypically analysed. To determine the effect on replication capacity, competition and <it>in vitro </it>evolution experiments were performed. Introduction of E40F results in an increase in Zidovudine resistance ranging from nine to fourteen fold depending on the RT background and at the same time confers a decrease in viral replication capacity. The K43E change does not decrease the susceptibility to Zidovudine but increases viral replication capacity, when combined with E40F, demonstrating a compensatory role for this codon change.</p> <p>Conclusion</p> <p>In conclusion, we have identified a novel resistance (E40F) and compensatory (K43E) change in HIV-1 RT. Further research is indicated to analyse the clinical importance of these changes.</p

    HIV-1 protease inhibitor mutations affect the development of HIV-1 resistance to the maturation inhibitor bevirimat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maturation inhibitors are an experimental class of antiretrovirals that inhibit Human Immunodeficiency Virus (HIV) particle maturation, the structural rearrangement required to form infectious virus particles. This rearrangement is triggered by the ordered cleavage of the precursor Gag polyproteins into their functional counterparts by the viral enzyme protease. In contrast to protease inhibitors, maturation inhibitors impede particle maturation by targeting the substrate of protease (Gag) instead of the protease enzyme itself. Direct cross-resistance between protease and maturation inhibitors may seem unlikely, but the co-evolution of protease and its substrate, Gag, during protease inhibitor therapy, could potentially affect future maturation inhibitor therapy. Previous studies showed that there might also be an effect of protease inhibitor resistance mutations on the development of maturation inhibitor resistance, but the exact mechanism remains unclear. We used wild-type and protease inhibitor resistant viruses to determine the impact of protease inhibitor resistance mutations on the development of maturation inhibitor resistance.</p> <p>Results</p> <p>Our resistance selection studies demonstrated that the resistance profiles for the maturation inhibitor bevirimat are more diverse for viruses with a mutated protease compared to viruses with a wild-type protease. Viral replication did not appear to be a major factor during emergence of bevirimat resistance. In all <it>in vitro </it>selections, one of four mutations was selected: Gag V362I, A364V, S368N or V370A. The impact of these mutations on maturation inhibitor resistance and viral replication was analyzed in different protease backgrounds. The data suggest that the protease background affects development of HIV-1 resistance to bevirimat and the replication profiles of bevirimat-selected HIV-1. The protease-dependent bevirimat resistance and replication levels can be explained by differences in CA/p2 cleavage processing by the different proteases.</p> <p>Conclusions</p> <p>These findings highlight the complicated interactions between the viral protease and its substrate. By providing a better understanding of these interactions, we aim to help guide the development of second generation maturation inhibitors.</p

    Comparison of digital PCR platforms and semi-nested qPCR as a tool to determine the size of the HIV reservoir

    Get PDF
    HIV persists in latently infected cells of patients on antiretroviral therapy (ART). This persistent proviral DNA reservoir is an important predictor of viral rebound upon therapy failure or interruption and forms a major obstacle towards cure. Accurate quantification of the low levels of persisting HIV DNA may aid patient monitoring and cure research. Digital PCR is a promising tool that enables direct absolute quantification with high sensitivity. With recent technological advances, several platforms are available to implement digital PCR in a clinical setting. Here, we compared two digital PCR platforms, the Quantstudio 3D (Life Technologies) and the QX100 (Bio-Rad) with a semi-nested qPCR on serial HIV DNA dilutions and DNA isolated from PBMCs of ART-suppressed patients. All three methods were able to detect target to the lowest levels of 2.5 HIV DNA copies. The QX100 excelled in having the least bias and highest precision, efficiency and quantitative linearity. Patient sample quantifications by the QX100 and semi-nested qPCR were highly agreeable by Bland-Altman analysis (0.01 ± 0.32 log10). Due to the observation of false-positive signals with current digital PCR platforms however, semi-nested qPCR may still be preferred in a setup of low quantity detection to discriminate between presence or absence of HIV DNA

    Modulation of HIV-1 Gag NC/p1 cleavage efficiency affects protease inhibitor resistance and viral replicative capacity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in the substrate of HIV-1 protease, especially changes in the NC/p1 cleavage site, can directly contribute to protease inhibitor (PI) resistance and also compensate for defects in viral replicative capacity (RC) due to a drug resistant protease. These NC/p1 changes are known to enhance processing of the Gag protein. To investigate the capacity of HIV-1 to modulate Gag cleavage and its consequences for PI resistance and RC, we performed a detailed enzymatic and virological analysis using a set of PI resistant NC/p1 variants (HXB2<sup>431V</sup>, HXB2<sup>436E+437T</sup>, HXB2<sup>437T </sup>and HXB2<sup>437V</sup>).</p> <p>Results</p> <p>Here, we demonstrate that single NC/p1 mutants, which displayed only a slight increase in PI resistance did not show an obvious change in RC. In contrast, the double NC/p1 mutant, which displayed a clear increase in processing efficiency and PI resistance, demonstrated a clear reduction in RC. Cleavage analysis showed that a tridecameric NC/p1 peptide representing the double NC/p1 mutant was cleaved in two specific ways instead of one.</p> <p>The observed decrease in RC for the double NC/p1 mutant (HXB2<sup>436E+437T</sup>) could (partially) be restored by either reversion of the 436E change or by acquisition of additional changes in the NC/p1 cleavage site at codon 435 or 438 as was revealed during <it>in vitro </it>evolution experiments. These changes not only restored RC but also reduced PI resistance levels. Furthermore these changes normalized Gag processing efficiency and obstructed the novel secondary cleavage site observed for the double NC/p1 mutant.</p> <p>Conclusions</p> <p>The results of this study clearly demonstrate that HIV-1 can modulate Gag processing and thereby PI resistance. Distinct increases in Gag cleavage and PI resistance result in a reduced RC that can only be restored by amino acid changes in NC/p1 which reduce Gag processing to an optimal rate.</p

    Epidemiological and Biological Evidence for a Compensatory Effect of Connection Domain Mutation N348I on M184V in HIV-1 Reverse Transcriptase

    Get PDF
    Background. The connection domain mutation N348I confers resistance to zidovudine (AZT) and is associated with the lamivudine (3TC) mutation M184V. We explored the biochemical and virological influence of N348I in the context of M184V. Methods. Genotypic resistance data for patients receiving monotherapy or dual therapy with AZT, lamivudine (3TC), or AZT/3TC were analyzed. Rates of N348I emergence were compared between treatment groups. Mutant reverse transcriptases (RTs) containing M184V and/or N348I were generated to study enzymatic and virological properties. Results. We included 50 AZT-treated, 11 3TC-treated, and 10 AZT/3TC-treated patients. N348I was observed in 3 (6%), 0, and 4 (40%) of these patients, respectively. The rate of N348I emergence was increased by 5-fold in the AZT/3TC group (11.7 instances [95% confidence interval {CI}, 3.2-30.1 instances] per 100 person-years of receipt of AZT), compared with the rate noted for the AZT group (2.3 instances [95% CI, 0.4-6.8 instances] per 100 person-years of receipt of AZT; P = .04). Biochemical data show that N348I can partially compensate for the diminution in processive DNA synthesis and the reduction in AZT excision associated with M184V. Furthermore, virological analyses demonstrate that N348I confers low-level resistance to AZT and partly restores the reduced RT activity of the M184V variant. Conclusion. In vivo selection of N348I is driven by AZT and is further facilitated when 3TC is coadministered. Compensatory interactions between N348I and M184V help to explain these finding

    HIV-1 Reverse Transcriptase Connection Domain Mutations: Dynamics of Emergence and Implications for Success of Combination Antiretroviral Therapy

    Get PDF
    Background. Factors promoting the emergence of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) connection domain mutations and their effect on antiretroviral therapy (ART) are still largely undetermined.We investigated this matter by analyzing genotypic resistance tests covering 400 amino acid positions in the RT of HIV-1 subtype B viruses and corresponding treatment histories and laboratory measurements. Methods. The emergence of connection domain mutations was studied in 334 patients receiving monotherapy or dual therapy with thymidine analogues at the time of the genotypic resistance test. Response to subsequent combination ART (cART) was analyzed using Cox regression for 291 patients receiving unboosted protease inhibitors. Response was defined by ever reaching an HIV RNA level <50 copies/mL during the first cART. Results. The connection domain mutations N348I, R356K, R358K, A360V, and A371V were more frequently observed in ART-exposed than ART-naive patients, of which only N348I and A360V were nonpolymorphic (with a prevalence of <1.5% in untreated patients). N348I correlated with M184V and predominantly occurred in patients receiving lamivudine and zidovudine concomitantly. A360V was not associated with specific drug combinations and was found to emerge later than M184V or thymidine analogue mutations. Nonpolymorphic connection domain mutations were rarely detected in the absence of established drug resistance mutations in ART-exposed individuals (prevalence, <1%). None of the 5 connection domain mutations associated with treatment showed a statistically significant effect on response to cART. Conclusions. Despite their frequent emergence, connection domain mutations did not show large detrimental effects on response to cART. Currently, routine implementation of connection domain sequencing seems unnecessary for developed health care setting

    Persistence of frequently transmitted drug-resistant HIV-1 variants can be explained by high viral replication capacity

    Get PDF
    Background: In approximately 10% of newly diagnosed individuals in Europe, HIV-1 variants harboring transmitted drug resistance mutations (TDRM) are detected. For some TDRM it has been shown that they revert to wild type while other mutations persist in the absence of therapy. To understand the mechanisms explaining persistence we investigated the in vivo evolution of frequently transmitted HIV-1 variants and their impact on in vitro replicative capacity. Results: We selected 31 individuals infected with HIV-1 harboring frequently observed TDRM such as M41L or K103N in reverse transcriptase (RT) or M46L in protease. In all these samples, polymorphisms at non-TDRM positions were present at baseline (median protease: 5, RT: 6). Extensive analysis of viral evolution of protease and RT demonstrated that the majority of TDRM (51/55) persisted for at least a year and even up to eight years in the plasma. D

    Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells

    Get PDF
    The C-type lectin dendritic cell (DC)–specific intercellular adhesion molecule grabbing non-integrin (DC-SIGN; CD209) facilitates binding and internalization of several viruses, including HIV-1, on DCs, but the underlying mechanism for being such an efficient phagocytic pathogen-recognition receptor is poorly understood. By high resolution electron microscopy, we demonstrate a direct relation between DC-SIGN function as viral receptor and its microlocalization on the plasma membrane. During development of human monocyte-derived DCs, DC-SIGN becomes organized in well-defined microdomains, with an average diameter of 200 nm. Biochemical experiments and confocal microscopy indicate that DC-SIGN microdomains reside within lipid rafts. Finally, we show that the organization of DC-SIGN in microdomains on the plasma membrane is important for binding and internalization of virus particles, suggesting that these multimolecular assemblies of DC-SIGN act as a docking site for pathogens like HIV-1 to invade the host

    Clinical use of HIV integrase inhibitors : a systematic review and meta-analysis

    Get PDF
    Background: Optimal regimen choice of antiretroviral therapy is essential to achieve long-term clinical success. Integrase inhibitors have swiftly been adopted as part of current antiretroviral regimens. The purpose of this study was to review the evidence for integrase inhibitor use in clinical settings. Methods: MEDLINE and Web-of-Science were screened from April 2006 until November 2012, as were hand-searched scientific meeting proceedings. Multiple reviewers independently screened 1323 citations in duplicate to identify randomized controlled trials, nonrandomized controlled trials and cohort studies on integrase inhibitor use in clinical practice. Independent, duplicate data extraction and quality assessment were conducted. Results: 48 unique studies were included on the use of integrase inhibitors in antiretroviral therapy-naive patients and treatment-experienced patients with either virological failure or switching to integrase inhibitors while virologically suppressed. On the selected studies with comparable outcome measures and indication (n = 16), a meta-analysis was performed based on modified intention-to-treat (mITT), on-treatment (OT) and as-treated (AT) virological outcome data. In therapy-naive patients, favorable odds ratios (OR) for integrase inhibitor-based regimens were observed, (mITT OR 0.71, 95% CI 0.59-0.86). However, integrase inhibitors combined with protease inhibitors only did not result in a significant better virological outcome. Evidence further supported integrase inhibitor use following virological failure (mITT OR 0.27; 95% CI 0.11-0.66), but switching to integrase inhibitors from a high genetic barrier drug during successful treatment was not supported (mITT OR 1.43; 95% CI 0.89-2.31). Integrase inhibitor-based regimens result in similar immunological responses compared to other regimens. A low genetic barrier to drug-resistance development was observed for raltegravir and elvitegravir, but not for dolutegravir. Conclusion: In first-line therapy, integrase inhibitors are superior to other regimens. Integrase inhibitor use after virological failure is supported as well by the meta-analysis. Careful use is however warranted when replacing a high genetic barrier drug in treatment-experienced patients switching successful treatment

    Midtrimester preterm prelabour rupture of membranes (PPROM):expectant management or amnioinfusion for improving perinatal outcomes (PPROMEXIL - III trial)

    Get PDF
    BACKGROUND: Babies born after midtrimester preterm prelabour rupture of membranes (PPROM) are at risk to develop neonatal pulmonary hypoplasia. Perinatal mortality and morbidity after this complication is high. Oligohydramnios in the midtrimester following PPROM is considered to cause a delay in lung development. Repeated transabdominal amnioinfusion with the objective to alleviate oligohydramnios might prevent this complication and might improve neonatal outcome. METHODS/DESIGN: Women with PPROM and persisting oligohydramnios between 16 and 24 weeks gestational age will be asked to participate in a multi-centre randomised controlled trial. Intervention: random allocation to (repeated) abdominal amnioinfusion (intervention) or expectant management (control). The primary outcome is perinatal mortality. Secondary outcomes are lethal pulmonary hypoplasia, non-lethal pulmonary hypoplasia, survival till discharge from NICU, neonatal mortality, chronic lung disease (CLD), number of days ventilatory support, necrotizing enterocolitis (NEC), periventricular leucomalacia (PVL) more than grade I, severe intraventricular hemorrhage (IVH) more than grade II, proven neonatal sepsis, gestational age at delivery, time to delivery, indication for delivery, successful amnioinfusion, placental abruption, cord prolapse, chorioamnionitis, fetal trauma due to puncture. The study will be evaluated according to intention to treat. To show a decrease in perinatal mortality from 70% to 35%, we need to randomise two groups of 28 women (two sided test, β-error 0.2 and α-error 0.05). DISCUSSION: This study will answer the question if (repeated) abdominal amnioinfusion after midtrimester PPROM with associated oligohydramnios improves perinatal survival and prevents pulmonary hypoplasia and other neonatal morbidities. Moreover, it will assess the risks associated with this procedure. TRIAL REGISTRATION: NTR3492 Dutch Trial Register (http://www.trialregister.nl)
    corecore