
1054 • JID 2010:201 (1 April) • von Wyl et al

M A J O R A R T I C L E

Epidemiological and Biological Evidence
for a Compensatory Effect of Connection Domain
Mutation N348I on M184V in HIV-1 Reverse
Transcriptase

Viktor von Wyl,1,a Maryam Ehteshami,6,a Jori Symons,7 Philippe Bürgisser,3 Monique Nijhuis,7 Lisa M. Demeter,8
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Background. The connection domain mutation N348I confers resistance to zidovudine (AZT) and is associated
with the lamivudine (3TC) mutation M184V. We explored the biochemical and virological influence of N348I in
the context of M184V.

Methods. Genotypic resistance data for patients receiving monotherapy or dual therapy with AZT, lamivudine
(3TC), or AZT/3TC were analyzed. Rates of N348I emergence were compared between treatment groups. Mutant
reverse transcriptases (RTs) containing M184V and/or N348I were generated to study enzymatic and virological
properties.

Results. We included 50 AZT-treated, 11 3TC-treated, and 10 AZT/3TC-treated patients. N348I was observed
in 3 (6%), 0, and 4 (40%) of these patients, respectively. The rate of N348I emergence was increased by 5-fold
in the AZT/3TC group (11.7 instances [95% confidence interval {CI}, 3.2–30.1 instances] per 100 person-years
of receipt of AZT), compared with the rate noted for the AZT group (2.3 instances [95% CI, 0.4–6.8 instances]
per 100 person-years of receipt of AZT; ). Biochemical data show that N348I can partially compensateP p .04
for the diminution in processive DNA synthesis and the reduction in AZT excision associated with M184V.
Furthermore, virological analyses demonstrate that N348I confers low-level resistance to AZT and partly restores
the reduced RT activity of the M184V variant.

Conclusion. In vivo selection of N348I is driven by AZT and is further facilitated when 3TC is coadministered.
Compensatory interactions between N348I and M184V help to explain these findings.

In human immunodeficiency virus type 1 (HIV-1), the

development of resistance to antiretroviral treatment

(ART) is induced by mutational changes in the genome,
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and many mutations have already been characterized

that confer resistance to specific antiretroviral com-

pounds [1]. Because of the mode of action of nucleoside

reverse-transcriptase inhibitors (NRTIs), such as zi-

dovudine (AZT), and nonnucleoside reverse-transcrip-

tase inhibitors (NNRTIs), such as nevirapine (NVP),

these mutations are predominantly located in the N-

terminal region of the p66 subunit of the HIV reverse

transcriptase (RT; amino acid residues 1–321). For ex-

ample, classical mutations conferring resistance to AZT

are clustered around the polymerase active site and are

referred to as “TAMs” (thymidine analogue–associated

mutations). They act by increasing the rate of adenosine

triphosphate (ATP)–dependent excision of the AZT-
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Figure 1. Rates of selection of N348I, thymidine analogue–associated
mutations (TAMs), and M184V, according to different first-line nucleoside
reverse-transcriptase inhibitor treatments (zidovudine [AZT], AZT/lami-
vudine [3TC], and 3TC). P values were calculated using Poisson regression.
Error bars denote 95% confidence intervals.

monophosphate (AZT-MP) from the 3′ end of the primer,

whereby ATP acts as a pyrophosphate (PPi) donor [2]. How-

ever, several more-recent studies have demonstrated that res-

idues of the C-terminus, including the connection domain (res-

idues 322–440) and residues in the ribonuclease (RNase) H

region (residues 441–560) of RT, may also have an effect on

viral susceptibility to antiretroviral drugs [3–8].

The connection domain mutation N348I is arguably the best

studied example in this context [9–11]. The prevalence of this

mutation is very low in ART-naive patients but is high in treat-

ment-experienced patients [9, 11, 12]. The presence of N348I

has been associated with increased resistance to both AZT and

NVP, making N348I a dual-class resistance mutation [9, 11].

Initial observations indicated that many C-terminus mutations,

including N348I, can enhance AZT resistance to a background

of TAMs [4, 13, 14]. It was hypothesized that mutations in the

C-terminus of RT reduce RNase H activity, thereby delaying

the degradation of the RNA template and complex dissociation,

which in turn allows more time for AZT-MP excision [4].

Further investigation into the role of N348I in conferring AZT

resistance revealed that this mutation reduces RNase H activity

by reducing the affinity of the enzymes for the DNA/RNA

substrate, specifically in the RNase H–competent complex [10].

An additional observation was that the N348I mutation also

increased processive DNA synthesis in enzymes containing

TAMs. These findings suggested that N348I contributes to AZT

resistance in both an RNase H–dependent and RNase H–in-

dependent manner.

However, the dynamics of N348I emergence in vivo and the

clinical relevance of this mutation are poorly understood. In a

recent study, Yap et al [9] observed that N348I is preferentially

selected during treatment including AZT or NVP and that it

appears very early during the course of treatment. The data

from that study and the observations of von Wyl et al [15]

further indicate that the presence of N348I is strongly associated

with the presence of lamivudine (3TC) mutation M184V, al-

though N348I alone does not appear to have a significant effect

on 3TC resistance [9]. It has previously been established that

the M184V mutation antagonizes AZT resistance in the back-

ground of TAMs, leading to AZT resensitization and AZT hy-

persusceptibility effects when these mutations are present to-

gether in the virus [16–19]. Hence, it was hypothesized that

the presence of N348I may mediate this antagonistic rela-

tionship and allow for simultaneous resistance to AZT and

3TC in the presence of TAMs and M184V. However, cell-

based in vitro susceptibility measurements do not support

this theory. M184V appears to cause AZT resensitization even

when N348I is present in the background of TAMs [5, 9].

Thus, the viral incentive for the early coselection of N348I

and M184V remains elusive. In the present study, we aimed

to explore the dynamics of the emergence of the N348I mu-

tation in the context of M184V in vivo and in vitro. In par-

ticular, we investigated the effects of this coselection on the

enzymatic and virological functions of RT.

METHODS

Epidemiological Analysis

We pooled viral sequences from the AIDS Clinical Trials

Group (ACTG) 320 trial [20, 21] (found in the Stanford Uni-

versity HIV Drug Resistance Database [22]), the Swiss HIV

Cohort Study [23, 24], and a trial of 3TC monotherapy [25].

These sequences span the full protease and the first 400 amino

acids of the RT (GenBank accession numbers GQ848100–

GQ848156). We selected genotypic tests that were performed

while patients were receiving the first course of monotherapy

or dual antiretroviral therapy with AZT and/or 3TC. Rates of

emergence of mutations (TAMs, M184V, and N348I) were

calculated on the basis of the total time that patients had

received treatment until genotypic testing was performed.

These rates were compared across the different treatments

with Poisson regression. Statistical analyses were performed

with Stata (version 10.1 SE; Stata Corporation). The level of

significance was set at 5%, and all P values were 2-sided.

Construction of Recombinant RT pHXB2 Clones

To create a pHXB2 RT deletion clone, a unique NgoMIV

restriction site at the end of RT was generated by site-directed
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Figure 2. The effect of N348I and M184V mutations on processive DNA synthesis. DNA synthesis was monitored in a time course after the addition
of magnesium chloride (MgCl2) and a heparin trap. The control lanes for each enzyme show that no DNA synthesis occurs in the absence of MgCl2
and that, in the absence of a heparin trap, all enzymes can generate the full-length product within 1 h.

mutagenesis polymerase chain reaction (PCR). In this con-

struct, the viral RT gene is replaced with a linker sequence

after digestion of the plasmid with MluNI (Roche) and

NgoMIV (Roche). The linker sequence containing the unique

AspI site was made using the primers 5′-CCAGACGCTGTCG-

3′ and 5′-CCGGCGACAGCGTCTGG-3′ (text shown in bold-

face type denotes the AspI site, text in italicized type denotes

the MluNI site, and text that is underlined denotes the

NgoMIV site). These primers contain part of the blunt-end

MluNI restriction site and partly overlap with the pHXB2

NgoMIV restriction site. The primers were incubated at 95�C

for 5 min, 55�C for 15 min, and 4�C for correct anneal-

ing. Subsequently, the AspI linker sequence was ligated over-

night at 4�C by use of T4 ligase (Promega), resulting in

pHXBDRTAsp. By doing so, transformation of relegated vec-

tors can be prevented by digestion with AspI.

To obtain the pHXB2 with the various RT mutations (wild

type [WT], M184V, N348I, and M184V/N348I), the pRT6H

DNA constructs of WT, M184V, N348I, and M184V/N348I RT

were amplified using RTBall 5′-ATGGCCCAAAAGTTAAACA-

ATGG-3′ and NgoMIV-INT1rev 5′-TTAGTCAGTGCCGGCA-

TCAGGA-3′, by means of the Expand High Fidelity PCR System

(Roche), essentially as described by the manufacturer. The PCR

product and the pHXBDRTAsp were digested with NgoMIV

and MluNI and subsequently were ligated overnight at 4�C with

T4 ligase. The ligated product was digested with AspI and pu-

rified with the Qiagen PCR Purification Kit (Qiagen). These

ligation products were transformed into Escherichia coli JM109

High Efficiency Competent Cells (Promega), by means of heat

shock at 42�C, and spread on Luria-Bertani agar plates con-

taining 40 mg/mL ampicillin. Colonies were inoculated into 100

mL of Luria-Bertani medium with 40 mg/mL ampicillin. The

plasmids were isolated using the Plasmid Midi Kit (Qiagen).

All HIV-1 constructs were verified by nucleotide sequencing.

Viral Culture

Cells. MT2 cells were maintained in Roswell Park Memorial

Institute (RPMI) 1640 with l-glutamine (BioWhittaker) sup-

plemented with 10% fetal bovine serum (Biochrom AG) and

10 mg/mL gentamicin (Gibco). 293T cells were maintained in

Dublecco’s modified Eagle medium (BioWhittaker) supple-

mented with 10% fetal bovine serum (Biochrom AG) and 10

mg/mL gentamicin. All cells were passed twice weekly.

Generation of recombinant viruses. To obtain the recom-

binant viruses, 10 mg of the recombinant plasmids was used to



Interactions between N348I and M184V • JID 2010:201 (1 April) • 1057

Figure 3. Relative reverse-transcriptase (RT) activity of wild-type (WT)
virus and recombinant RT viruses: M184V, N348I, and M184V/N348I. WT
RT activity was set as 100%, and the viral RT activity of recombinant
strains was plotted against WT activity ( ). Error bars denote stan-n p 3
dard errors. HIV-1, human immunodeficiency virus type 1.

transfect 293T cells at 90%–95% confluence. For transfection,

Lipofectamine 2000 reagent (Invitrogen) was used in accor-

dance with the manufacturer’s protocol. After 48 h, recombi-

nant viruses were harvested, and viral supernatant was obtained

for p24 analysis.

RT Activity and Drug Susceptibility Assays

To determine RT activity, 20 ng of p24 from different HXB2

viral mutant strains (N348I, M184V, and the double mutant

M184V/N348I) and WT virus was used in the RT activity assay

colorimetric (Roche), as described by the manufacturer. The

drug susceptibility of recombinant viruses was determined in

the multiple-cycle MTT assay [26].

Biochemical Studies

Enzymes and nucleic acids. The HIV-1 RT enzymes were

generated and purified as described elsewhere [27]. “TAMs”

refers to the AZT-resistant enzyme harboring mutations M41L,

T215Y, L210W, and D67N. “WT” RT refers to the HXB2 HIV

strain WT enzyme with no mutations. RNA and DNA oligo-

nucleotides were obtained as described elsewhere [10].

Enzyme processivity. A total of 20 nmol/L 5′-radiolabeled

DNA primer PBS-28 was annealed to complementary PBS-250

[10]. The RNA/DNA hybrid was then incubated with 400 nmol/

L RT and 2 mmol/L of each of the 4 deoxyribonucleotide tri-

phosphates (dNTPs) in a buffer containing 100 mmol/L EDTA,

50 mmol/L NaCl, and Tris-HCl, pH 7.8. As described elsewhere

[10], the large excess of RT over the primer/template substrate

compensates for putative differences in active site concentra-

tions among the different enzyme preparations. DNA synthesis

was initiated at 37�C with the addition of 6 mmol/L magnesium

chloride (MgCl2) and 2 mg/mL heparin trap (Bioshop). DNA

synthesis products were isolated and visualized as described

elsewhere [10].

Combined AZT-MP incorporation and excision.Inhibition

of DNA synthesis was monitored in the presence of 2 mmol/L

AZT-triphosphate (TP), under the conditions described above

(in the absence of a heparin trap). Excision and the ensuing

rescue of chain-terminated DNA synthesis were subsequently

studied in the presence of 50 mmol/L PPi and 3 mmol/L ATP,

respectively. PPi-mediated DNA synthesis rescue was quantified

with ImageQuant software (version 5.2; GE). The fraction of

full-length product at 180 min is measured as the ratio of the

product over the sum of the product and unextended substrate.

RNase H activity. The radiolabeled RNA template (5′-

ggaaaucucuagcaguggcgcccgaacagggacct-3′) was hybridized to an

excess of DNA primer (5′-AGGTCCCTGTTCGGGCGCCACT-

3′). A total of 100 nmol/L RNA/DNA hybrid was then incubated

with a 2-fold molar excess of RT (WT or mutant) in the pres-

ence of 100 mmol/L EDTA, 50 mmol/L NaCl, and 50 mmol/L

Tris-HCl, pH 7.8. RNase H cleavage was initiated with the

addition of 6 mmol/L MgCl2 and monitored over time at 37�C

(3, 7, 15, 30, 45, and 60 min). Samples were isolated and vi-

sualized on a 12% polyacrylamide gel.

RESULTS

Rates of selection of N348I during therapy with AZT or AZT/

3TC. In total, 71 patients (50 receiving AZT, 10 receiving

AZT/3TC, and 11 receiving 3TC) had genotypic drug resistance

tests performed while they were receiving their first NRTI treat-

ment. As shown in Figure 1, of the 71 samples obtained from

patients receiving first-line treatment, 3 (6%) of 50 patients

who were receiving AZT harbored viruses with the N348I mu-

tation, compared with 4 (40%) of 10 patients who were re-

ceiving AZT/3TC. N348I was not detected in the 11 samples

from the 3TC monotherapy group. The duration of treatment

for patients who had received thymidine analogues at the time

of testing was similar for the AZT and AZT/3TC groups, with

a median duration of 1.5 years (interquartile range [IQR], 0.7–

4.2 years) and 2.1 years (IQR, 0.5–5.0 years), respectively

( , by Mann-Whitney U test). Consequently, the AZT/P p .86

3TC group had a 15-fold higher rate of N348I emergence (11.7

instances/100 person-years of exposure to thymidine analogues

[95% CI, 3.2–30.1 instances/100 person-years of exposure to

thymidine analogues]) than the AZT group (2.3 instances/100

person-years of exposure to thymidine analogues [95% CI, 0.4–

6.8 instances/100 person-years of exposure to thymidine ana-

logues]; ). The fact that no instance of an N348I mu-P p .04

tation occurred in the 3TC monotherapy group after a median

of 1.2 years (IQR, 0.70–1.4 years) of treatment strongly suggests

that N348I is selected by AZT but that selection is greatly en-

hanced when 3TC is coadministered with AZT.
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Figure 4. Pyrophosphate (PPi)–mediated excision of zidovudine-monophosphate (AZT-MP) and ensuing DNA synthesis rescue in the context of M184V
and N348I. DNA synthesis was monitored in the presence of 2 mmol/L deoxyribonucleotide triphosphates, 2 mmol/L AZT, and 50 mmol/L PPi. Control
lanes show the unextended primer in the absence of magnesium chloride (MgCl2). PPi CTRL, DNA synthesis in the absence of PPi. WT, wild type.

N348I and compensation for M184V-induced deficits in

processive DNA synthesis. Previous studies have shown that

RT enzymes harboring the M184V mutation show deficits in

processive DNA synthesis and nucleic acid binding [28, 29].

We have shown elsewhere that N348I can increase processive

DNA synthesis in the background of TAMs, although the def-

icits with regard to processive DNA synthesis with enzymes

containing TAMs are, by far, not as pronounced as those seen

with M184V [10]. Hence, we aimed to determine whether the

N348I mutation can also compensate for M184V-induced po-

lymerization deficits when the 2 mutations are present together

in RT. We monitored processive DNA synthesis with enzymes

harboring M184V, N348I, or both mutations (Figure 2). DNA

synthesis was initiated in the presence of a heparin trap to

ensure single-turnover conditions. As expected, the M184V

mutant shows reduced processivity when compared with WT

RT, as is indicated by reductions in full-length DNA product

formation. The N348I mutant, on the other hand, does not

appear to be compromised in this regard. Interestingly, when

the 2 mutations are present together, processivity is reestab-

lished, suggesting that the presence of N348I mutation does

indeed compensate for M184V-introduced deficits in processive

DNA synthesis. These findings are consistent with the results

of an activity assay with RT enzymes isolated from virions

(Figure 3). Diminished product formation associated with

M184V is partially corrected by N348I.

We next asked whether the combined effects of an efficient

processive DNA synthesis and diminished RNase H activity

associated with N348I may facilitate excision and rescue of

DNA synthesis. If correct, we also expect to observe such a

phenotype in the absence of TAMs with PPi as the substrate

for the excision reaction. To address this problem, we per-

formed a multisite AZT-MP excision assay in the presence of

PPi, in which the appearance of full-length DNA product is

indicative of rescued DNA synthesis (Figure 4). After 180 min,

the M184V mutant showed 24% full-length product formation,

compared with 59% for WT RT. This reduction in full-length

product formation correlates with reduced DNA processivity

of the mutant enzyme and its diminished ability to excise AZT-

MP [16]. On the other hand, the enzyme containing the N348I

mutation shows even subtle increases in full-length product

formation, compared with WT RT (81% vs 59%, respectively).

The M184V/N348I mutant shows AZT-MP excision levels com-

parable to those of the N348I mutant (78% vs 81%, respec-

tively), suggesting that N348I-mediated AZT-MP excision is

not largely reduced against a background of M184V. We also
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Figure 5. Adenosine triphosphate (ATP)–mediated excision of zidovudine-monophosphate (AZT-MP) and ensuing DNA synthesis rescue in the context
of thymidine analogue–associated mutations (TAMs), M184V, and N348I. DNA synthesis was monitored in the presence of 2 mmol/L deoxyribonucleotide
triphosphates, 2 mmol/L AZT, and 3.5 mmol/L ATP. Control lanes show the unextended primer in the absence of magnesium chloride (MgCl2).

studied the efficiency of ATP-dependent excision and the en-

suing rescue of AZT-terminated DNA synthesis at multiple

positions (Figure 5). When M184V is introduced against a

background of TAMs, rescue of DNA synthesis is reduced rel-

ative to TAMs, which is in agreement with AZT resensitization

effects associated with M184V. The mutant enzyme containing

TAMs and N348I shows the highest level of DNA synthesis,

and the yield of the full-length product remains at similar high

levels when the M184V mutation is simultaneously present.

These findings suggest that N348I is able to override the neg-

ative effect of M184V on the excision reaction and that the

N348I phenotype is dominant over M184V in these biochem-

ical assays.

Failure of M184V to compensate for N348I-mediated def-

icits in RNase H activity. Conversely, we hypothesized that

the M184V mutation may be able to counteract the RNase H–

related deficits of N348I that contribute, at least in part, to the

increased efficiency of the combined excision rescue of DNA

synthesis. To address this question, we studied the efficiency of

RNase H cleavage in time course experiments (Figure 6). The

M184V mutation does not appear to affect RNase H activity,

as indicated by high yields of short RNA products that are

comparable with WT RT. The N348I mutant shows reduced

RNase H activity, as seen by the reduced production of short-

er products. The addition of M184V against the N348I back-

ground does not appear to compensate for this deficit.

Drug susceptibility assays. Susceptibility assays for AZT

exhibited a 2-fold increase in resistance when N348I was pres-

ent, which decreased almost to resistance levels noted for the

WT in the context of M184V and N348I (Figure 7). Resistance

to 3TC was high in M184V and M184V/N348I mutants (1600-

fold resistance for both), whereas levels of 3TC resistance in

mutants with N348I alone were comparable to those noted in

the WT (not shown).

DISCUSSION

Using a multidisciplinary approach, we investigated in vivo

dynamics and the biochemical and virological implications of

the emergence of the connection domain mutation N348I in

the context of M184V. Our in vivo analyses indicated that N348I

is selected by thymidine analogues but that selection rate is

enhanced by 5-fold when 3TC is used concomitantly (Figure

1). This observation strongly suggests a synergism between

M184V and the emergence of N348I. The biochemical exper-

iments yielded possible explanations for the coselection of these
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Figure 6. The effect of N348I and M184V mutations on RNA template cleavage. Ribonuclease (RNase) H activity for each reverse-transcriptase
(RT) enzyme was monitored in a time course after the addition of magnesium chloride (MgCl2). Controls indicate that RNA cleavage occurs only in
the presence of RT and MgCl2. The �12, �9, �8 and �6 labels denote the RNA fragment size, measured from the 3′ end of the primer. WT, wild
type.

Figure 7. Fold resistance to zidovudine (AZT) for wild-type (WT) virus
and recombinant reverse-transcriptase (RT) viruses: M184V, N348I, and
M184V/N348I. Fold resistance of recombinant strains was plotted against
WT ( ). Error bars denote the standard error.n � 4

mutations. The M184V mutant shows severe deficits in pro-

cessive DNA synthesis. Compensation for this phenotype oc-

curs when the N348I mutation is added (Figure 2). These find-

ings were confirmed in an RT assay in which the addition of

N348I to the recombinant RT in the context of M184V led to

a restoration of RT activity, compared with an RT with M184V

as the sole mutation (Figure 3).

We further studied the excision of AZT-MP in a panel of

mutant RTs with N348I, M184V (Figure 4), and TAMs (Figure

5). In this study, we found that RT harboring M184V alone

reduces PPi-mediated AZT-MP excision, whereas the presence

of N348I alone shows a subtle increase in the excision rate

relative to WT. Moreover, we observed that the introduction

of N348I mutation in a background of M184V fully restores

AZT-MP removal and DNA synthesis rescue (Figure 4). When

we studied M184V- and N348I-mediated alterations in the ef-

ficiency of ATP-dependent AZT-MP excision in the context of

TAMs, we found that N348I is able to further enhance the

excision rate in the presence of TAMs and to override the

negative effect of M184V on the reaction (Figure 5). This effect,

although more subtle, was confirmed in a phenotypic drug

resistance assay (Figure 7).

RNase H activity assays further confirm that the presence of

N348I leads to reduced RNase H activity, whereas M184V has

no effect in this regard (Figure 6). In addition, no increase in

RNase H activity was observed when M184V was introduced

in the background of N348I, suggesting that M184V cannot

compensate for RNase H–mediated deficiencies introduced by

N348I.

Although recent studies suggested that N348I may not coun-

teract the antagonism between M184V and TAMs [5, 9], our

own data point to a subtle reduction in AZT susceptibility when

the N348I/M184V double mutant was compared with the re-

combinant virus containing M184V. Moreover, DNA product

formation in the absence of inhibitors is likewise increased with

the double mutant. In light of our findings that N348I hardly

ever occurs alone and that M184V is preceding the emergence

of N348I, these combined data are indeed consistent with a

compensatory role of N348I under selective pressure by AZT.

To summarize, in conjunction with in vivo clinical data, our

findings suggest that N348I may arise in association with failure

of treatment involving thymidine analogues, particularly in com-
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bination with 3TC, because N348I may compensate for M184V-

mediated deficits with regard to DNA polymerization and the

combined excision and rescue of AZT-terminated DNA synthesis.

The clinical effect of the N348I connection domain mutation,

with regard to treatment responses to NRTIs and NNRTIs to

date, is not known. A preliminary analysis within the Swiss HIV

Cohort Study did not reveal an effect of N348I on treatment

response; however, the sample size was limited (data not shown).

Additional clinical studies are clearly warranted.
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