1,022 research outputs found

    STS Observations of Landau Levels at Graphite Surfaces

    Full text link
    Scanning tunneling spectroscopy measurements were made on surfaces of two different kinds of graphite samples, Kish graphite and highly oriented pyrolytic graphite (HOPG), at very low temperatures and in high magnetic fields. We observed a series of peaks in the tunnel spectra, which grow with increasing field, both at positive and negative bias voltages. These are associated with Landau quantization of the quasi two-dimensional electrons and holes in graphite in magnetic fields perpendicular to the basal plane. Almost field independent Landau levels fixed near the Fermi energy, which are characteristic of the graphite crystalline structure, were directly observed for the first time. Calculations of the local density of states at the graphite surfaces allow us to identify Kish graphite as bulk graphite and HOPG as graphite with finite thickness effectively

    Scanning tunneling microscopy and spectroscopy studies of graphite edges

    Full text link
    We studied experimentally and theoretically the electronic local density of states (LDOS) near single step edges at the surface of exfoliated graphite. In scanning tunneling microscopy measurements, we observed the (3×3)R30(\sqrt{3} \times \sqrt{3}) R 30^{\circ} and honeycomb superstructures extending over 3-4 nm both from the zigzag and armchair edges. Calculations based on a density-functional derived non-orthogonal tight-binding model show that these superstructures can coexist if the two types of edges admix each other in real graphite step edges. Scanning tunneling spectroscopy measurements near the zigzag edge reveal a clear peak in the LDOS at an energy below the Fermi energy by 20 meV. No such a peak was observed near the armchair edge. We concluded that this peak corresponds to the "edge state" theoretically predicted for graphene ribbons, since a similar prominent LDOS peak due to the edge state is obtained by the first principles calculations.Comment: 4 pages, 6 figures, APF9, Appl. Surf. Sci. \bf{241}, 43 (2005

    Indication of intrinsic spin Hall effect in 4d and 5d transition metals

    Full text link
    We have investigated spin Hall effects in 4dd and 5dd transition metals, Nb, Ta, Mo, Pd and Pt, by incorporating the spin absorption method in the lateral spin valve structure; where large spin current preferably relaxes into the transition metals, exhibiting strong spin-orbit interactions. Thereby nonlocal spin valve measurements enable us to evaluate their spin Hall conductivities. The sign of the spin Hall conductivity changes systematically depending on the number of dd electrons. This tendency is in good agreement with the recent theoretical calculation based on the intrinsic spin Hall effect.Comment: 5 pages, 4 figure

    Magnetism as a mass term of the edge states in graphene

    Full text link
    The magnetism by the edge states in graphene is investigated theoretically. An instability of the pseudo-spin order of the edge states induces ferrimagnetic order in the presence of the Coulomb interaction. Although the next nearest-neighbor hopping can stabilize the pseudo-spin order, a strong Coulomb interaction makes the pseudo-spin unpolarized and real spin polarized. The magnetism of the edge states makes two peaks of the density of states in the conduction and valence energy bands near the Fermi point. Using a continuous model of the Weyl equation, we show that the edge-induced gauge field and the spin dependent mass terms are keys to make the magnetism of the edge states. A relationship between the magnetism of the edge states and the parity anomaly is discussed.Comment: 7 pages, 5 figure

    Spin-Echo Measurements for an Anomalous Quantum Phase of 2D Helium-3

    Full text link
    Previous heat-capacity measurements of our group had shown the possible existence of an anomalous quantum phase containing the zero-point vacancies (ZPVs) in 2D 3^{3}He. The system is monolayer 3^{3}He adsorbed on graphite preplated with monolayer 4^{4}He at densities (ρ\rho) just below the 4/7 commensurate phase (0.8ρ/ρ4/710.8\leq \rho /\rho_{4/7}\leq 1). We carried out pulsed-NMR measurements in order to examine the microscopic and dynamical nature of this phase. The measured decay of spin echo signals shows the non-exponential behaviour. The decay curve can be fitted with the double exponential function, but the relative intensity of the component with a longer time constant is small (5%) and does not depend on density and temperature, which contradicts the macroscopic fluid and 4/7 phase coexistence model. This slowdown is likely due to the mosaic angle spread of Grafoil substrate and the anisotropic spin-spin relaxation time T2T_{2} in 2D systems with respect to the magnetic field direction. The inverse T2T_2 value deduced from the major echo signal with a shorter time constant, which obeys the single exponential function, decreases linearly with decreasing density from n=1n=1, supporting the ZPV model.Comment: 4 pages, 6 figure

    Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges

    Full text link
    We measured the electronic local density of states (LDOS) of graphite surfaces near monoatomic step edges, which consist of either the zigzag or armchair edge, with the scanning tunneling microscopy (STM) and spectroscopy (STS) techniques. The STM data reveal that the (3×3)R30(\sqrt{3} \times \sqrt{3}) R 30^{\circ} and honeycomb superstructures coexist over a length scale of 3-4 nm from both the edges. By comparing with density-functional derived nonorthogonal tight-binding calculations, we show that the coexistence is due to a slight admixing of the two types of edges at the graphite surfaces. In the STS measurements, a clear peak in the LDOS at negative bias voltages from -100 to -20 mV was observed near the zigzag edges, while such a peak was not observed near the armchair edges. We concluded that this peak corresponds to the graphite "edge state" theoretically predicted by Fujita \textit{et al.} [J. Phys. Soc. Jpn. {\bf 65}, 1920 (1996)] with a tight-binding model for graphene ribbons. The existence of the edge state only at the zigzag type edge was also confirmed by our first-principles calculations with different edge terminations.Comment: 20 pages, 11 figure

    The Impact of a Failed Coup d’État on Happiness, Life Satisfaction, and Trust: The Case of the Plot in Turkey on July 15, 2016

    Get PDF
    This paper examines the impact of the failed coup d’état attempt in Turkey on July 15, 2016, on people’s happiness, life satisfaction, and trust and finds that the plot had a significant negative effect on all three variables. This paper is the first to show that coups d’état can have a significant adverse effect on people’s well-being, as in the case of terrorist attacks

    Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube.

    Get PDF
    International audienceArticles you may be interested in A slip model for rarefied gas flows above a moving surface with mass transfe

    Gauge field for edge state in graphene

    Full text link
    By considering the continuous model for graphene, we analytically study a special gauge field for the edge state. The gauge field explains the properties of the edge state such as the existence only on the zigzag edge, the partial appearance in the kk-space, and the energy position around the Fermi energy. It is demonstrated utilizing the gauge field that the edge state is robust for surface reconstruction, and the next nearest-neighbor interaction which breaks the particle-hole symmetry stabilizes the edge state.Comment: 9 pages, 5 figure

    Theory of superconductivity of carbon nanotubes and graphene

    Full text link
    We present a new mechanism of carbon nanotube superconductivity that originates from edge states which are specific to graphene. Using on-site and boundary deformation potentials which do not cause bulk superconductivity, we obtain an appreciable transition temperature for the edge state. As a consequence, a metallic zigzag carbon nanotube having open boundaries can be regarded as a natural superconductor/normal metal/superconductor junction system, in which superconducting states are developed locally at both ends of the nanotube and a normal metal exists in the middle. In this case, a signal of the edge state superconductivity appears as the Josephson current which is sensitive to the length of a nanotube and the position of the Fermi energy. Such a dependence distinguishs edge state superconductivity from bulk superconductivity.Comment: 5 pages, 2 figure
    corecore