We present a new mechanism of carbon nanotube superconductivity that
originates from edge states which are specific to graphene. Using on-site and
boundary deformation potentials which do not cause bulk superconductivity, we
obtain an appreciable transition temperature for the edge state. As a
consequence, a metallic zigzag carbon nanotube having open boundaries can be
regarded as a natural superconductor/normal metal/superconductor junction
system, in which superconducting states are developed locally at both ends of
the nanotube and a normal metal exists in the middle. In this case, a signal of
the edge state superconductivity appears as the Josephson current which is
sensitive to the length of a nanotube and the position of the Fermi energy.
Such a dependence distinguishs edge state superconductivity from bulk
superconductivity.Comment: 5 pages, 2 figure