8 research outputs found

    Empirical Approach to Satellite Snow Detection

    Get PDF
    Snow cover plays a significant role in the weather and climate system, ecosystems and many human activities, such as traffic. Weather station snow observations (snow depth and state of the ground) do not provide high-resolution continental or global snow coverage data. The satellite observations complement in situ observations from weather stations. Geostationary weather satellites provide observations at high temporal resolution, but the spatial resolution is low, especially in polar regions. Polar-orbiting weather satellites provide better spatial resolution in polar regions with limited temporal resolution. The best detection resolution is provided by optical and infra-red radiometers onboard weather satellites. Snow cover in itself is highly variable. Also, the variability of the surface properties (such as vegetation, water bodies, topography) and changing light conditions make satellite snow detection challenging. Much of this variability is in subpixel scales, and this uncertainty creates additional challenges for the development of snow detection methods. Thus, an empirical approach may be the most practical option when developing algorithms for automatic snow detection. In this work, which is a part of the EUMETSAT-funded H SAF project, two new empirically developed snow extent products for the EUMETSAT weather satellites are presented. The geostationary MSG/SEVIRI H32 snow product has been in operational production since 2008. The polar product Metop/AVHRR H32 is available since 2015. In addition, validation results based on weather station snow observations between 2015 and 2019 are presented. The results show that both products achieve the requirements set by the H SAF.Lumipeitteellä on huomattava vaikutus säähän, ilmastoon, luontoon ja yhteiskuntaan. Pelkästään sääasemilla tehtävät lumihavainnot (lumen syvyys ja maanpinnan laatu) eivät anna kattavaa kuvaa lumen peittävyydestä tai muista lumipeitteen ominaisuuksista. Sääasemien tuottamia havaintoja voidaan täydentää satelliiteista tehtävillä havainnoilla. Geostationaariset sääsatelliitit tuottavat havaintoja tihein välein, mutta havaintoresoluutio on heikko monilla alueilla, joilla esiintyy kausittaista lunta. Polaariradoilla sääsatelliittien havaintoresoluutio on napa-alueiden läheisyydessä huomattavasti parempi, mutta silloinkaan satelliitit eivät tuota jatkuvaa havaintopeittoa. Tiheimmän havaintoresoluution tuottavat sääsatelliittiradiometrit, jotka toimivat optisilla aallonpituuksilla (näkyvä valo ja infrapuna). Lumipeitteen kaukokartoitusta satelliiteista vaikeuttavat lumipeitteen oman vaihtelun lisäksi pinnan ominaisuuksien vaihtelu (kasvillisuus, vesistöt, topografia) ja valaistusolojen vaihtelu. Epävarma ja osittain puutteellinen tieto pinnan ja kasvipeitteen ominaisuuksista vaikeuttaa luotettavan automaattisen analyyttisen lumentunnistusmenetelmän kehittämistä ja siksi empiirinen lähestymistapa saattaa olla toimivin vaihtoehto automaattista lumentunnistusmenetelmää kehitettäessä. Tässä työssä esitellään kaksi EUMETSATin osittain rahoittamassa H SAFissa kehitettyä lumituotetta ja niissä käytetyt empiiristä lähestymistapaa soveltaen kehitetyt algoritmit. Geostationaarinen MSG/SEVIRI H31 lumituote on saatavilla vuodesta 2008 alkaen ja polaarituote Metop/AVHRR H32 vuodesta 2015 alkaen. Lisäksi esitellään pintahavaintoihin perustuvat validointitulokset, jotka osoittavat tuotteiden saavuttavan määritellyt tavoitteet

    Empirical approach to satellite snow detection

    Get PDF
    Lumipeitteellä on huomattava vaikutus säähän, ilmastoon, luontoon ja yhteiskuntaan. Pelkästään sääasemilla tehtävät lumihavainnot (lumen syvyys ja maanpinnan laatu) eivät anna kattavaa kuvaa lumen peittävyydestä tai muista lumipeitteen ominaisuuksista. Sääasemien tuottamia havaintoja voidaan täydentää satelliiteista tehtävillä havainnoilla. Geostationaariset sääsatelliitit tuottavat havaintoja tihein välein, mutta havaintoresoluutio on heikko monilla alueilla, joilla esiintyy kausittaista lunta. Polaariradoilla sääsatelliittien havaintoresoluutio on napa-alueiden läheisyydessä huomattavasti parempi, mutta silloinkaan satelliitit eivät tuota jatkuvaa havaintopeittoa. Tiheimmän havaintoresoluution tuottavat sääsatelliittiradiometrit, jotka toimivat optisilla aallonpituuksilla (näkyvä valo ja infrapuna). Lumipeitteen kaukokartoitusta satelliiteista vaikeuttavat lumipeitteen oman vaihtelun lisäksi pinnan ominaisuuksien vaihtelu (kasvillisuus, vesistöt, topografia) ja valaistusolojen vaihtelu. Epävarma ja osittain puutteellinen tieto pinnan ja kasvipeitteen ominaisuuksista vaikeuttaa luotettavan automaattisen analyyttisen lumentunnistusmenetelmän kehittämistä ja siksi empiirinen lähestymistapa saattaa olla toimivin vaihtoehto automaattista lumentunnistusmenetelmää kehitettäessä. Tässä työssä esitellään kaksi EUMETSATin osittain rahoittamassa H SAFissa kehitettyä lumituotetta ja niissä käytetyt empiiristä lähestymistapaa soveltaen kehitetyt algoritmit. Geostationaarinen MSG/SEVIRI H31 lumituote on saatavilla vuodesta 2008 alkaen ja polaarituote Metop/AVHRR H32 vuodesta 2015 alkaen. Lisäksi esitellään pintahavaintoihin perustuvat validointitulokset, jotka osoittavat tuotteiden saavuttavan määritellyt tavoitteet.Snow cover plays a significant role in the weather and climate system, ecosystems and many human activities, such as traffic. Weather station snow observations (snow depth and state of the ground) do not provide highresolution continental or global snow coverage data. The satellite observations complement in situ observations from weather stations. Geostationary weather satellites provide observations at high temporal resolution, but the spatial resolution is low, especially in polar regions. Polarorbiting weather satellites provide better spatial resolution in polar regions with limited temporal resolution. The best detection resolution is provided by optical and infra-red radiometers onboard weather satellites. Snow cover in itself is highly variable. Also, the variability of the surface properties (such as vegetation, water bodies, topography) and changing light conditions make satellite snow detection challenging. Much of this variability is in subpixel scales, and this uncertainty creates additional challenges for the development of snow detection methods. Thus, an empirical approach may be the most practical option when developing algorithms for automatic snow detection. In this work, which is a part of the EUMETSAT-funded H SAF project, two new empirically developed snow extent products for the EUMETSAT weather satellites are presented. The geostationary MSG/SEVIRI H32 snow product has been in operational production since 2008. The polar product Metop/AVHRR H32 is available since 2015. In addition, validation results based on weather station snow observations between 2015 and 2019 are presented. The results show that both products achieve the requirements set by the H SAF

    Effect of small-scale snow surface roughness on snow albedo and reflectance

    Get PDF
    The primary goal of this paper is to present a model of snow surface albedo accounting for small-scale surface roughness effects. The model is based on photon recollision probability, and it can be combined with existing bulk volume albedo models, such as Two-streAm Radiative Trans-fEr in Snow (TARTES). The model is fed with in situ measurements of surface roughness from plate profile and laser scanner data, and it is evaluated by comparing the computed albedos with observations. It provides closer results to empirical values than volume-scattering-based albedo simulations alone. The impact of surface roughness on albedo increases with the progress of the melting season and is larger for larger solar zenith angles. In absolute terms, small-scale surface roughness can decrease the total albedo by up to about 0.1. As regards the bidirectional reflectance factor (BRF), it is found that surface roughness increases backward scattering especially for large solar zenith angle values

    Cloud-probability-based estimation of black-sky surface albedo from AVHRR data

    No full text
    This paper describes a new method for cloudcorrecting observations of black-sky surface albedo derived using the Advanced Very High Resolution Radiometer (AVHRR). Cloud cover constitutes a major challenge for surface albedo estimation using AVHRR data for all possible conditions of cloud fraction and cloud type with any land cover type and solar zenith angle. This study shows how the new cloud probability (CP) data to be provided as part of edition A3 of the CLARA (CM SAF cLoud, Albedo and surface Radiation dataset from AVHRR data) record from the Satellite Application Facility on Climate Monitoring (CM SAF) project of EUMETSAT can be used instead of traditional binary cloud masking to derive cloud-free monthly mean surface albedo estimates. Cloudy broadband albedo distributions were simulated first for theoretical cloud distributions and then using global cloud probability (CP) data for 1 month. A weighted mean approach based on the CP values was shown to produce very-high-accuracy black-sky surface albedo estimates for simulated data. The 90 % quantile for the error was 1.1 % (in absolute albedo percentage) and that for the relative error was 2.2 %. AVHRR-based and in situ albedo distributions were in line with each other and the monthly mean values were also consistent. Comparison with binary cloud masking indicated that the developed method improves cloud contamination removal

    MetOp/AVHRR snow detection method for meteorological applications

    No full text
    Abstract Snow cover plays a significant role in the weather and climate system by affecting the energy and mass transfer between the surface and the atmosphere. It also has far-reaching effects on ecosystems of snow-covered areas. Therefore, global snow-cover observations in a timely manner are needed. Satellite-based instruments can be utilized to produce snow-cover information that is suitable for these needs. Highly variable surface and snow-cover features suggest that operational snow extent algorithms may benefit from at least a partly empirical approach that is based on carefully analyzed training data. Here, a new two-phase snow-cover algorithm utilizing data from the Advanced Very High Resolution Radiometer (AVHRR) on board the MetOp satellites of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) is introduced and evaluated. This algorithm is used to produce the MetOp/AVHRR H32 snow extent product for the Satellite Application Facility on Support to Operational Hydrology and Water Management (H SAF). The algorithm aims at direct detection of snow-covered and snow-free pixels without preceding cloud masking. Pixels that cannot be classified reliably to snow or snow-free, because of clouds or other reasons, are set as unclassified. This reduces the coverage but increases the accuracy of the algorithm. More than four years of snow-depth and state-of-the-ground observations from weather stations were used to validate the product. Validation results show that the algorithm produces high-quality snow coverage data that may be suitable for numerical weather prediction, hydrological modeling, and other applications

    Airborne measurements of surface albedo and leaf area index of snow-covered boreal forest

    No full text
    International audienceHelicopter based simultaneous measurements of broadband surface albedo and the effective leaf area index (LAIeff) were carried out in subarctic area of Finnish Lapland in spring 2008, 2009, and 2010 under varying illumination and snow cover conditions. Vertical profile measurements show that the found relationship between albedo and LAIeff seems to be rather independent of the flight altitude and therefore the footprint scale. Actually, flights above 500 m in altitude revealed low variations of the surface albedo approaching an aerial average at 1 km, meaning that a footprint of 20 km is representative of the landscape. The albedo of the area was beta distributed, and without LAIeff values below 0.25, the average albedo value of the area would decrease from 0.49 to 0.44 showing the albedo sensitivity to sparse vegetation. The results agreed with the photon recollision probability based model PARAS and the MODIS satellite albedo product MCD43A3. However, differences between satellite based and airborne albedo values were noticed, which could be explained by a difference in footprint size and/or the strong local heterogeneity as certain flights were operated on specific targets

    National Activities with Respect to the Global Climate Observing System (GCOS) Implementation Plan Prepared for Submission to the United Nations Framework Convention on Climate Change (UNFCCC)

    No full text
    Finland continues its efforts in carrying out, archiving and distributing the most reliable and sustainable systematic observations related to various climate variables. These atmospheric, oceanic and terrestrial observations are based on the regulations of corresponding international organizations. The implementation of systematic observations in Finland is tabulated in this report, which was made in accordance with the revised United Nations Framework Convention on Climate Change Reporting Guidelines on Global Climate Change Observing Systems (2007). Since the foundation of the Global Climate Observing System the climate-related work in Finland has been directed gradually to follow the GCOS climate monitoring principles. The continuation and improvement of these activities are going on as well as climate change-related research

    Effect of small-scale snow surface roughness on snow albedo and reflectance

    No full text
    The primary goal of this paper is to present a model of snow surface albedo accounting for small-scale surface roughness effects. The model is based on photon recollision probability, and it can be combined with existing bulk volume albedo models, such as Two-streAm Radiative TransfEr in Snow (TARTES). The model is fed with in situ measurements of surface roughness from plate profile and laser scanner data, and it is evaluated by comparing the computed albedos with observations. It provides closer results to empirical values than volume-scattering-based albedo simulations alone. The impact of surface roughness on albedo increases with the progress of the melting season and is larger for larger solar zenith angles. In absolute terms, small-scale surface roughness can decrease the total albedo by up to about 0.1. As regards the bidirectional reflectance factor (BRF), it is found that surface roughness increases backward scattering especially for large solar zenith angle values.Peer reviewe
    corecore