5 research outputs found

    Observation of an E2 (Ubc9)-homodimer by crystallography

    Get PDF
    Post-translational modifications by the small ubiquitin-like modifiers (SUMO), in particular the formation of poly-SUMO-2 and -3 chains, regulates essential cellular functions and its aberration leads to life-threatening diseases (Geoffroy and Hay, 2009) [1]. It was shown previously that the non-covalent interaction between SUMO and the conjugating enzyme (E2) for SUMO, known as Ubc9, is required for poly-SUMO-2/3 chain formation (Knipscheer et al., 2007) [2]. However, the structure of SUMO-Ubc9 non-covalent complex, by itself, could not explain how the poly-SUMO-2/3 chain forms and consequently a Ubc9 homodimer, although never been observed, was proposed for poly-SUMO-2/3 chain formation (Knipscheer et al., 2007) [2]. Here, we solved the crystal structure of a heterotrimer containing a homodimer of Ubc9 and the RWD domain from RWDD3. The asymmetric Ubc9 homodimer is mediated by the N-terminal region of one Ubc9 molecule and a surface near the catalytic Cys of the second Ubc9 molecule (Fig. 1A). This N-terminal surface of Ubc9 that is involved in the homodimer formation also interacts with the RWD domain, the ubiquitin-fold domain of the SUMO activating enzyme (E1), SUMO, and the E3 ligase, RanBP2 (Knipscheer et al., 2007; Tong et al.. 1997; Tatham et al., 2005; Reverter and Lima, 2005; Capili and Lima, 2007; Wang et al., 2009, 2010; Wang and Chen, 2010; Alontaga et al., 2015) [2–10]. The existence of the Ubc9 homodimer in solution is supported by previously published solution NMR studies of rotational correlation time and chemical shift perturbation (Alontaga et al., 2015; Yuan et al., 1999) [10,11]. Site-directed mutagenesis and biochemical analysis suggests that this dimeric arrangement of Ubc9 is likely important for poly-SUMO chain formation (Fig. 1B and C). The asymmetric Ubc9 homodimer described for the first time in this work could provide the critical missing link in the poly-SUMO chain formation mechanism. The data presented here are related to the research article entitled, “RWD domain as an E2 (Ubc9) interaction module” (Alontaga et al., 2015) [10]. The data of the crystal structure has been deposited to RCSB protein data bank with identifier: 4Y1L. Keywords: SUMO, Poly-SUMO chain, RWD, Ubiquitin, Ubc9, E1, Ubiquitin-like, Modification

    Unexpected involvement of staple leads to redesign of selective bicyclic peptide inhibitor of Grb7

    No full text
    The design of potent and specific peptide inhibitors to therapeutic targets is of enormous utility for both proof-of-concept studies and for the development of potential new therapeutics. Grb7 is a key signaling molecule in the progression of HER2 positive and triple negative breast cancers. Here we report the crystal structure of a stapled bicyclic peptide inhibitor G7-B1 in complex with the Grb7-SH2 domain. This revealed an unexpected binding mode of the peptide, in which the staple forms an alternative contact with the surface of the target protein. Based on this structural information, we designed a new series of bicyclic G7 peptides that progressively constrain the starting peptide, to arrive at the G7-B4 peptide that binds with an approximately 2-fold enhanced affinity to the Grb7-SH2 domain (K(D) = 0.83 μM) compared to G7-B1 and shows low affinity binding to Grb2-, Grb10- and Grb14-SH2 domains (K(D) > 100 μM). Furthermore, we determined the structure of the G7-B4 bicyclic peptide in complex with the Grb7-SH2 domain, both before and after ring closing metathesis to show that the closed staple is essential to the target interaction. The G7-B4 peptide represents an advance in the development of Grb7 inhibitors and is a classical example of structure aided inhibitor development

    Cyclic Peptides Incorporating Phosphotyrosine Mimetics as Potent and Specific Inhibitors of the Grb7 Breast Cancer Target

    No full text
    The Grb7 adaptor protein is a therapeutic target for both TNBC and HER2+ breast cancer. A nonphosphorylated cyclic peptide <b>1</b> (known as G7–18NATE) inhibits Grb7 via targeting the Grb7-SH2 domain, but requires the presence of phosphate ions for both affinity and specificity. Here we report the discovery of malonate bound in the phosphotyrosine binding pocket of the apo-Grb7-SH2 structure. Based on this, we carried out the rational design and synthesis of two analogues of peptide <b>1</b> that incorporate carboxymethylphenylalanine (cmF) and carboxyphenylalanine (cF) as mimics of phosphotyrosine (pY). Binding studies using SPR confirmed that affinity for Grb7-SH2 domain is improved up to 9-fold over peptide <b>1</b> under physiological phosphate conditions (<i>K</i><sub>D</sub> = 2.1–5.7 μM) and that binding is specific for Grb7-SH2 over closely related domains (low or no detectable binding to Grb2-SH2 and Grb10-SH2). X-ray crystallographic structural analysis of the analogue bearing a cmF moiety in complex with Grb7-SH2 has identified the precise contacts conferred by the pY mimic that underpin this improved molecular interaction. Together this study identifies and characterizes the tightest specific inhibitor of Grb7 to date, representing a significant development toward a new Grb7-targeted therapeutic
    corecore