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a b s t r a c t

Post-translational modifications by the small ubiquitin-like modi-
fiers (SUMO), in particular the formation of poly-SUMO-2 and -3
chains, regulates essential cellular functions and its aberration
leads to life-threatening diseases (Geoffroy and Hay, 2009) [1]. It
was shown previously that the non-covalent interaction between
SUMO and the conjugating enzyme (E2) for SUMO, known as Ubc9,
is required for poly-SUMO-2/3 chain formation (Knipscheer et al.,
2007) [2]. However, the structure of SUMO-Ubc9 non-covalent
complex, by itself, could not explain how the poly-SUMO-2/3 chain
forms and consequently a Ubc9 homodimer, although never been
observed, was proposed for poly-SUMO-2/3 chain formation
(Knipscheer et al., 2007) [2]. Here, we solved the crystal structure
of a heterotrimer containing a homodimer of Ubc9 and the RWD
domain from RWDD3. The asymmetric Ubc9 homodimer is
mediated by the N-terminal region of one Ubc9 molecule and a
surface near the catalytic Cys of the second Ubc9 molecule
(Fig. 1A). This N-terminal surface of Ubc9 that is involved in the
homodimer formation also interacts with the RWD domain, the
ubiquitin-fold domain of the SUMO activating enzyme (E1), SUMO,
and the E3 ligase, RanBP2 (Knipscheer et al., 2007; Tong et al..
1997; Tatham et al., 2005; Reverter and Lima, 2005; Capili and
Lima, 2007; Wang et al., 2009, 2010; Wang and Chen, 2010;
Alontaga et al., 2015) [2–10]. The existence of the Ubc9 homodimer
in solution is supported by previously published solution NMR studies
of rotational correlation time and chemical shift perturbation
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Fig. 1. Proposed mechanism of poly-SUMO chain fo
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The structure of non-covalent Ubc9-SUMO complex is
the position of the SUMO molecule, shown in red, o
segment of SUMO that contains the SUMOylation sit
molecule that forms a thioester conjugate with the
homodimer observed here is important for poly-SUMO
to test the ability of Ubc9 in stimulating the formatio
mutated, because this surface is directly involved in a
that of surface containing Y134 near the catalytic Cys [
type and Ubc9 Y134A mutant is shown to the left. Qua
Y134A showed severe defects in catalyzing poly-SUMO
from E1 to E2, and from E2 to target proteins [13,14], w
the effect of the mutation on SUMO transfer from E1-
SDS-PAGE analysis of mono-SUMO-1 modification of S
Quantification of gel band intensity using the ImageJ s
catalyzing poly-SUMO-2 chains than mono-SUMO-1 m
formation was not only due to its effect on general S
structure is likely important to the formation of poly-
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(Alontaga et al., 2015; Yuan et al., 1999) [10,11]. Site-directed muta-
genesis and biochemical analysis suggests that this dimeric arrange-
ment of Ubc9 is likely important for poly-SUMO chain formation
(Fig. 1B and C). The asymmetric Ubc9 homodimer described for the
first time in this work could provide the critical missing link in the
poly-SUMO chain formation mechanism. The data presented here are
related to the research article entitled, “RWD domain as an E2 (Ubc9)
interaction module” (Alontaga et al., 2015) [10]. The data of the crystal
structure has been deposited to RCSB protein data bank with
identifier: 4Y1L.
& 2016 The Authors. Published by Elsevier Inc. This is an open access

article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Value of the data

� Provides the first reported E2 homodimer crystal structure.
� Establishes a role for the evolutionary conserved RWD domain.
� The asymmetric Ubc9 homodimer described in this work could provide the critical missing link in

the poly-SUMO chain formation mechanism.
1. Data, experimental design, materials and methods

1.1. Protein expression and purification

The recombinant proteins contained His6-tag and were expressed in Escherichia coli and purified
by Ni-NTA-column. Protein purity was greater than 90% as estimated by Coomasie-stained SDS gel.

1.2. NMR sample preparation and experiments

All NMR spectra were acquired at 25 °C on a Bruker Avance spectrometer equipped with a cryo-
probe and operating at a 600-MHz 1H frequency.

1.3. Biochemical assays

All SUMO conjugation assays were conducted in a mixture that contained 5 mM ATP and assay
buffer (20 mM HEPES, pH 7.5, 50 mM NaCl, 5 mM MgCl2, and 0.1% TWEEN) unless otherwise stated.
Assay reactions were incubated at 37 °C and were stopped by addition of SDS loading buffer. Samples
were resolved on 4�12% Bis-Tris NuPAGE SDS-PAGE gels (Invitrogen), and the polypeptide bands
were visualized with SimplyBlue SafeStain (Invitrogen). To investigate the effect of Ubc9 WT and
mutant on poly-SUMO chain formation, a mixture containing 50 mM Tris pH 7.6, 150 mM NaCl, 5 mM
MgCl2, 0.05% Triton X, 1 mM DTT, E1 (0.2 mM), SUMO-2/3 (100 mM), 5 mM ATP were incubated with
Ubc9 WT or the Y134A (5 and 10 mM) for 4 h before stopping it with reducing SDS loading buffer.
Sp100-SUMO conjugation assay contained 0.25 μM E1, 0.25 μM Ubc9, 2 μM of the M-IR2 domain of
RanBP2 [4] (referred as RanBP2), 15 μM GST-Sp100, 15 μM SUMO-1, the reactions were initiated by
adding 5 mM ATP, or water for the negative control. The reactions were quenched with SDS sample
buffer containing 360 mM DTT. Staining was achieved with Simply Blue.

1.4. Crystallization, data collection, and structure determination

Search for optimum Ubc9-RWD protein complex growth conditions was conducted using the
hanging drop vapor diffusion method at 20 °C using Wizard 3 and 4 crystallization screens (Rigaku
Reagents). The complex was prepared by mixing 500 μL of 1 mM RWD and 1 mM Ubc9 solutions
(1:1 M ratio). The complex was incubated on ice for 2 h. The solution was spun down at 5000 rpm for
5 min to separate the precipitate. The concentration of the clear protein solution was between
13�18 mg/ml. To make sure we obtained the Ubc9-RWD crystals instead of a single protein of either
Ubc9 or RWD, we also screened the single proteins using the same conditions as the complex. Three
crystallization conditions (Wizard 3, conditions 12 and 19; and Wizard 4, condition 48) were opti-
mized to produce Ubc9-RWD crystals by varying the buffer pH, protein concentration and PEG
concentrations. Crystals of Ubc9-RWD complex displaying a flat plate morphology were obtained
after 4�5 days in the optimized condition of 10% (w/v) PEG8000, 100 mM HEPES/NaOH, pH 8.0 and
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8% ethylene glycol at a volume ratio of 2:1 Ubc9-RWD complex to crystallization solution. The crystal
of the heterotrimeric Ubc9-RWD belonged to space group P 1 21 1 with unit cell dimensions of
a¼63.23 A°;, b¼34.86 A°, c¼114.51 A°, α¼90°, β¼98.53°, and γ¼90°. X-ray diffraction data was collected
at the X-ray Crystallography Core at City of Hope on Rigaku Micromax�007 HF instrument equipped
with R-AXIS IVþþ plate reader. The Ubc9-RWD heterotrimer crystals diffracted to 2.7 A°. Diffraction
data was reduced and scaled using XDS and XSCALE [15], respectively followed by conversion into
mtz format by XDSCONV and F2MTZ [15]. Initial phase information was obtained through molecular
replacement using Molrep [16] and the structures of Ubc9 (PDB ID: 1U9B) and human RWD domain
(PDB ID: 2EBK). The initial model was improved through iterative refinement using Phenix [17] with
model building in Coot [18].
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