269 research outputs found

    Fast Mode Decision on H.264/AVC Baseline Profile for real-time performance

    Get PDF
    In this paper a new fast mode decision (FMD) algorithm is proposed for the recent H.264/AVC video coding standard, aiming to reduce its computational load without loosing coding efficiency. This algorithm identifies redundancy and selects the minimum sub-set of modes for each macroblock (MB) required to provide high rate-distortion (RD) efficiency. It is based on a fast analysis of the histogram of the difference image between frames which classifies the areas of each frame as active or non-active by means of an adaptive thresholding technique. More coding effort is devoted to active areas with the selection of a large sub-set of Modes, as these areas are expected to be the most relevant in terms of RD cost. Results show reduction values around 35–65% of motion estimation (ME) time, preserving the RD cost for the Baseline Profile, by using P-Slices and without needing B-Slices. Moreover, the strategy works as an intelligent tool for real-time applications with constrained number of operations per frame: it wisely uses the given operational resources distributing them among those MBs that need it

    Hyper-Cross-Linked Porous Polymer Featuring B−N Covalent Bonds (HCP-BNs): A Stable and Efficient Metal-Free Heterogeneous Photocatalyst

    Get PDF
    The first example of a porous polymer containing B-Ncovalentbonds, prepared from a tetraphene B-N monomer and biphenylas a comonomer, is reported. It was prepared using the solvent knittingstrategy, which allows the connection between the aromatic rings ofthe two monomers through methylene groups provided by an externalcross-linking agent. The new polymer exhibited micromeso porositywith an S (BET) of 612 m(2)/g, highthermal stability, and potential properties as a heterogeneous photocatalyst,since it is very active in the aza-Henry coupling reaction (>98%ofconversion and selectivity). After the first run, the catalyst improvesits photocatalytic activity, shortening the reaction time to only2 h and maintaining this activity in successive runs. The presenceof a radical in this structure that remains stable with successiveruns makes it a new type of material with potential applications asa highly stable and efficient photocatalyst.Ministerio de Ciencia e InnovaciónComunidad de Madri

    El papel de los entomólogos en el siglo actual

    Get PDF
    P.19-25El 18 de septiembre de 1997, en el Aula Magna “San Isidoro” de la Universidad de León y coincidiendo con la celebración del Fifht International Symposium on Aphids que tenía lugar durante esos días, se celebró la solemne ceremonia académica de investidura como doctor “honoris causa” por la Universidad de León del Prof. Georges Remaudière. Considerando que el mensaje del texto además de estar en plena actualidad, tiene un interés general y que ese interés que no se vio atendido por ninguno de los dos libros mencionados –por lo limitado de la difusión del primero de ellos y por lo especializado del segundo–, hemos estimado interesante ponerlo al alcance de un público más amplio. Para ello se ha contado con la autorización expresa del Prof. Remaudière. El texto no se ha alterado, aunque los autores de este prólogo y también de las notas fi nales nos hemos permitido añadir un título inspirado en el sentir del propio discurso. Valgan además estas líneas para agradecer al Dr. Remaudière su fecundo trabajo dedicado al estudio de los pulgones, impregnado de un extraordinario amor a la naturaleza, y preocupación por el mantenimiento de los ecosistemas y de los equilibrios naturales; su experiencia y su testimonio no dejan de sorprendernosS

    Road environment modeling using robust perspective analysis and recursive Bayesian segmentation

    Get PDF
    Recently, vision-based advanced driver-assistance systems (ADAS) have received a new increased interest to enhance driving safety. In particular, due to its high performance–cost ratio, mono-camera systems are arising as the main focus of this field of work. In this paper we present a novel on-board road modeling and vehicle detection system, which is a part of the result of the European I-WAY project. The system relies on a robust estimation of the perspective of the scene, which adapts to the dynamics of the vehicle and generates a stabilized rectified image of the road plane. This rectified plane is used by a recursive Bayesian classi- fier, which classifies pixels as belonging to different classes corresponding to the elements of interest of the scenario. This stage works as an intermediate layer that isolates subsequent modules since it absorbs the inherent variability of the scene. The system has been tested on-road, in different scenarios, including varied illumination and adverse weather conditions, and the results have been proved to be remarkable even for such complex scenarios

    Carbon-encapsulated iron nanoparticles as reusable adsorbents for micropollutants removal from water

    Full text link
    Adsorption represents the most plausible technology for micropollutants removal from water nowadays. Nevertheless, the regeneration of the saturated carbon materials is still an important challenge, being these solids in practice commonly disposed. This work aims at overcoming this issue by using innovative carbonencapsulated iron nanoparticles (CE-nFe). This material was synthesized by a low-cost and green method viz. hydrothermal carbonization (HTC), using olive mill wastewater as carbonaceous source. The solid was fully characterized by different techniques (magnetic properties, elemental analyses, N2-sorption isotherms, pHPZC, ICP, XRD and TEM). It showed a clear core-shell structure of around 40 nm in diameter. The core was mainly formed by zero-valent iron and the shell by graphitized carbon. Accordingly, it showed an essentially mesoporous structure, with a specific surface area of 169 m2 g−1 , and a clear hydrophobic character (pHPZC = 10). Its adsorption performance was investigated using three relevant micropollutants (diclofenac (DCF), sulfamethoxazole (SMX) and metronidazole (MNZ)). A very fast removal of the micropollutants was achieved (30 min at the most, with rate constants in the range of 0.11–0.41 g mg−1 min−1 ). The adsorption isotherms revealed the vertical packing of the adsorbate molecules onto the adsorbent active centers, being the data successfully described by the GAB model. The saturated adsorbents were effectively regenerated by heterogeneous Fenton oxidation, taking advantage of the iron core of CE-nFe and the opened mesoporous carbon shell. The regeneration efficiency increased with increasing the operating temperature (25–75 ◦C) and contact time (1–4 h), as well as the H2O2 dose up to 6 g L-1. The micropollutant nature affected the adsorbent regeneration yield in the order: SMX > DCF > MNZ, consistent with their reactivity towards Fenton oxidationThis research has been supported by the Spanish MINECO through the project CTM-2016-76454-R and by the CM through the project P2018/EMT-4341. M. Munoz and J. Nieto-Sandoval thank the Spanish MINECO for the Ramón y Cajal postdoctoral contract (RYC-2016-20648) and the FPI predoctoral grant (BES-2017-081346), respectivel

    A systematic approach for peptide characterization of B-cell receptor in chronic lymphocytic leukemia cells

    Get PDF
    A wide variety of immunoglobulins (Ig) is produced by the immune system thanks to different mechanisms (V(D)J recombination, somatic hypermutation, and antigen selection). The profiling of Ig sequences (at both DNA and peptide levels) are of great relevance to developing targeted vaccines or treatments for specific diseases or infections. Thus, genomics and proteomics techniques (such as Next- Generation Sequencing (NGS) and mass spectrometry (MS)) have notably increased the knowledge in Ig sequencing and serum Ig peptide profiling in a high-throughput manner. However, the peptide characterization of membrane-bound Ig (e.g., B-cell receptors, BCR) is still a challenge mainly due to the poor recovery of mentioned Ig. Herein, we have evaluated three different sample processing methods for peptide sequencing of BCR belonging to chronic lymphocytic leukemia (CLL) B cells identifying up to 426 different peptide sequences (MS/MS data are available via ProteomeXchange with identifier PXD004466). Moreover, as a consequence of the results here obtained, recommended guidelines have been described for BCR-sequencing of B-CLL samples by MS approaches. For this purpose, an in-house algorithm has been designed and developed to compare the MS/MS results with those obtained by molecular biology in order to integrate both proteomics and genomics results and establish the steps to follow when sequencing membrane-bound Ig by MS/MS.We gratefully acknowledge financial support from the Spanish Health Institute Carlos III (ISCIII) for the grants: FIS PI11/02114 and FIS PI114/01538. We also acknowledge Fondos FEDER (EU) and Junta Castilla León (grant BIO/SA07/15). This work has been also sponsored by Fundación Solórzano (FS/23-2015). The Proteomics Unit belongs to ProteoRed, PRB2-ISCIII, supported by grant PT13/0001, of the PE I+D+I 2013-2016, funded by ISCIII and FEDER. The authors would like to thank all the clinicians and technicians in the Cytometry and Cell Purification Services of the University of Salamanca, the Spanish National DNA Bank (Banco Nacional de DNA Carlos III, University of Salamanca) and the Genomic Unit of Cancer Research Centre (IBMCC, USAL-CSIC) for their support in the data collection for the preparation of this manuscript. P.D. is supported by a JCYL-EDU/346/2013 Ph.D. scholarship.Peer Reviewe

    A beam-beam monitoring detector for the MPD experiment at NICA

    Full text link
    The Multi-Purpose Detector (MPD) is to be installed at the Nuclotron Ion Collider fAcility (NICA) of the Joint Institute for Nuclear Research (JINR). Its main goal is to study the phase diagram of the strongly interacting matter produced in heavy-ion collisions. These studies, while providing insight into the physics of heavy-ion collisions, are relevant for improving our understanding of the evolution of the early Universe and the formation of neutron stars. In order to extend the MPD trigger capabilities, we propose to include a high granularity beam-beam monitoring detector (BE-BE) to provide a level-0 trigger signal with an expected time resolution of 30 ps. This new detector will improve the determination of the reaction plane by the MPD experiment, a key measurement for flow studies that provides physics insight into the early stages of the reaction. In this work, we use simulated Au+Au collisions at NICA energies to show the potential of such a detector to determine the event plane resolution, providing further redundancy to the detectors originally considered for this purpose namely, the Fast Forward Detector (FFD) and the Hadron Calorimeter (HCAL). We also show our results for the time resolution studies of two prototype cells carried out at the T10 beam line at the CERN PS complex.Comment: 16 pages, 12 figures. Updated to published version with added comments and correction

    White Paper 4: Challenges In Biomedicine & Health

    Get PDF
    Publicado en Madrid, 231 p. ; 17 cm.A lesson that we have learned from the pandemia caused by coronavirus is that solutions in health require coordinated actions. Beside this and other emerging and re-emerging infectious diseases, millions of Europeans are suffering a plethora of disorders that are currently acquiring epidemic dimensions, including cancer, rare diseases, pain and food allergies, among others. New tools for prevention, diagnosis and treatment need to be urgently designed and implemented using new holistic and multidisciplinary approaches at three different levels (basic research, translational/clinical and public/social levels) and involving researchers, clinicians, industry and all stakeholders in the health system. The CSIC is excellently positioned to lead and coordinate these challenges in Biomedicine and Health.Peer reviewe

    Molecular and cytogenetic characterization of expanded B-cell clones from multiclonal versus monoclonal B-cell chronic lymphoproliferative disorders

    Get PDF
    Chronic antigen-stimulation has been recurrently involved in the earlier stages of monoclonal B-cell lymphocytosis, chronic lymphocytic leukemia and other B-cell chronic lymphoproliferative disorders. The expansion of two or more B-cell clones has frequently been reported in individuals with these conditions; potentially, such coexisting clones have a greater probability of interaction with common immunological determinants. Here, we analyzed the B-cell receptor repertoire and molecular profile, as well as the phenotypic, cytogenetic and hematologic features, of 228 chronic lymphocytic leukemia-like and non-chronic lymphocytic leukemia-like clones comparing multiclonal (n=85 clones from 41 cases) versus monoclonal (n=143 clones) monoclonal B-cell lymphocytosis, chronic lymphocytic leukemia and other B-cell chronic lymphoproliferative disorders. The B-cell receptor of B-cell clones from multiclonal cases showed a slightly higher degree of HCDR3 homology than B-cell clones from mono clonal cases, in association with unique hematologic (e.g. lower B-lymphocyte counts) and cytogenetic (e.g. lower frequency of cytogenetically altered clones) features usually related to earlier stages of the disease. Moreover, a subgroup of coexisting B-cell clones from individual multiclonal cases which were found to be phylogenetically related showed unique molecular and cytogenetic features: they more frequently shared IGHV3 gene usage, shorter HCDR3 sequences with a greater proportion of IGHV mutations and del(13q14.3), than other unrelated B-cell clones. These results would support the antigen-driven nature of such multiclonal B-cell expansions, with potential involvement of multiple antigens/epitopes
    corecore